N1810/1/2 Coaxial Switches

High Performance Electromechanical Switches for Microwave and RF Manufacturing Test Systems

In today's fast-moving technical industries, test engineers need components they can count on. Keysight offers a line of latching coaxial switches that combine legendary reliability with the widest range of performance options available today.

Key Features	
Insertion loss repeatability	0.03 dB to 1 million cycles and 0.1 dB to 2 million cycles
High isolation	$>120 \mathrm{~dB}$ at 4 GHz
Low SWR	<1.10 at 4 GHz
Low-insertion loss	$<0.27 \mathrm{~dB}$ at 4 GHz
Long life	2 million cycles

Key Applications

- Radar and satellite testing
- Wireless W-HDMI device testing
- Microwave backhaul applications
- DC to 4 GHz
- DC to 20 GHz
- DC to 26.5 GHz

KEYSIGHT
TECHNOLOGIES

Reduce downtime

Keysight Technologies is the world leader in innovating and developing microwave accessories for communications and aerospace applications. Our innovative design and strict adherence to quality process control ensure that each switch is guaranteed to perform within warranted specifications for its entire lifetime. With fewer breakdowns and less need to recalibrate, your test system moves quicker with less downtime, creating more throughput and revenue.

Raise your standards

All Keysight switches offer excellent repeatability and long life - up to five times the lifecycles of the competition. Add to this aggressive specs for isolation, SWR, and insertion loss, and you have a switch that impresses even the most demanding engineer with its precision and durability.

Increase flexibility

For test systems that require extra functionality or increased performance, the N181x family of switches has a solution that fits your need. The options include:

- Reduced SWR
- Increased isolation
- Standard or TTL drive
- 5, 15,24 volts drive
- Position indicators

Increase productivity

When you buy your switches from Keysight, you notice a difference. Your test platforms run smoother, longer and faster, while yielding more viable and valuable measurements.

Description

Model No.	Description
N1810UL	Unterminated latching The Keysight N1810UL is a single-pole double-throw switch available in the frequency range from DC to 26.5 GHz . In precision measurements and monitoring applications where insertion loss repeatability is crucial, these switches operate in excess of 2 million cycles with better than 0.03 dB of insertion loss repeatability at $25^{\circ} \mathrm{C}$ up to 1 million cycles.
N1810TL	Terminated latching The Keysight N1810TL is a single-pole double-throw switch available in the frequency range from DC to 26.5 GHz. The unused port is terminated 50Ω, making it ideal for applications where port matching is required.
N1811TL	Terminated latching The N1811TL is a terminated bypass switch available in the frequency range from DC to 26.5 GHz. The switch's internal load can terminate the device under test when in the bypass mode (up to 1 watt). Because of its compact design, it is ideal for drop-in, drop- out applications.
N1812UL	Unterminated latching The N1812UL is a versatile, unterminated 5-port switch available in the frequency range from DC to 26.5 GHz. In transfer switch applications, the fifth port can be terminated externally with a high-power termination. It can also be utilized for signal path reversal or as a calibration port.

Technology

Keysight switches are designed with a rectangular coaxial structure similar to edge-line. This transmission line structure provides for movement of the edge-line center conductor between two fixed, continuous ground planes. The main advantage of this innovation is that the moving contacts can be easily activated yet maintain high-isolation and low-insertion loss.

The RF contact configuration is designed for controlled wiping action. Since the outer conductor is not part of the switching function, repeatability and life are improved. The switching action occurs typically within 15 milliseconds, after which permanent magnets latch the contacts to retain the new switch position.

Operation

All switches are "break before make," the switched ports are not connected to each other. This prevents damage to sensitive circuits and enhances test simplicity.

Driving

There are two positions for the N181x family of switches. Standard switching is accomplished by applying the supply voltage to pin $5(+\mathrm{V})$ and grounding either pin $4(\mathrm{~A})$ or pin $3(\mathrm{~B})$ to actuate the mechanism to the desired state. See page 5, pin-out diagram.

Warning minimum switch spacing is 6.0 mm (0.25 inch).

The N181x comes with current interrupt, the drive current is automatically disconnected after the switch is fully latched (15 ms).

Option 401 drives the switch with TTL/5V CMOS compatible logic, which controls the DC power supply to drive the switch.

Option 402 provides electronic indication of switch state. The circuitry consists of two independent commons, which can be connected to outputs corresponding to either position A or B. Because the commons are electrically isolated from each other as well as the drive circuit, this option allows two position signals to be obtained.

Specifications

Specifications describe the instrument's warranted performance. Supplemental and typical characteristics are intended to provide information useful in applying the instrument by giving typical, but not warranted performance parameters.

General

Maximum power rating Into internal termination Into thru path
Hot switching Coil voltage Connector

1 W CW, 7 VDC, 50 W pk, 10 us max pulse duration, not to exceed 1 W average
2 W CW, 10 VDC, 100 W pk, $10 \mu \mathrm{~s}$ max pulse duration, not to exceed 2 W average 5, 15, 24 VDC
Option 004/020/026 SMA (f)

Standard performance specifications - N1810/1/2 Series (Frequency options 004/020/026)

Isolation $(\mathrm{dB})=90-\left(\frac{30}{26.5}\right) \mathrm{F}$, where F is specified in GHz

DC	4 GHz	12.4 GHz	20 GHz	26.5 GHz
90	85	76	67	60

Insertion loss $(\mathrm{dB})=0.35+\left(\frac{0.45}{26.5}\right) \mathrm{F}$, where F is specified in GHz

	DC	4 GHz	12.4 GHz	20 GHz	26.5 GHz
SWR	0.35	0.42	0.56	0.69	0.80
		$\mathrm{DC-4} \mathrm{GHz}$	$4-12.4 \mathrm{GHz}$	$12.4-20 \mathrm{GHz}$	$\mathbf{2 0 - 2 6 . 5 \mathrm { GHz }}$
	1.15	1.25	1.30	1.60	

Optional high-performance specifications - N1810/1/2 Series
Isolation $(\mathrm{dB})=125-\left(\frac{35}{26.5}\right) \mathrm{F}$, where F is specified in GHz

	DC	4 GHz	12.4 GHz	20 GHz	26.5 GHz
Option 301^{1}	125	120	109	99	90

Insertion loss $(\mathrm{dB})=0.20+\left(\frac{0.45}{26.5}\right) \mathrm{F}$, where F is specified in GHz

	DC	4 GHz	12.4 GHz	20 GHz	26.5 GHz
Option 302	0.2	0.27	0.41	0.53	0.65
SWR		DC-4 GHz	$4-12.4 \mathrm{GHz}$	$12.4-20 \mathrm{GHz}$	$\mathbf{2 0 - 2 6 . 5 ~ G H z}$
Option 302		1.10	1.20	1.23	1.45

1. Option 301:

Storage and cycling temperature: $-55^{\circ} \mathrm{C}$ to $+65{ }^{\circ} \mathrm{C}$
Operating temperature: $-25^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$

N1810UL

Dimensions are nominal values in millimeters and inches, unless otherwise specified.

N1810UL

Switch drive specifications N1810UL						
Option	Parameter	Conditions	Min	Nominal	Max	Units
105	Supply voltage		4.5	5	7.0	V
	Supply current	Supply voltag		550		mA
115^{1}	Supply voltage		12.0	15	20.0	V
	Supply current	Supply voltag		300		mA
$124{ }^{2}$	Supply voltage		20.0	24	32.0	V
	Supply current	Supply voltag		200		mA
TTL drive specifications						
Option	Parameter	Conditions	Min	Nominal	Max	Units
401	High level input		3.0		12.0	V
	Low level input		0.0		1.0	V
	Max input current	Input voltage			1.0	mA
		Input voltage $=3.85 \mathrm{~V}$		0.25	0.5	mA
Driving the switch*						
STD drive connect GND to ground		TTL drive connect GND to ground	RF state		INDICATOR state	
A	$B \quad \mathrm{~A}$	B				
GND	OPEN H	Lo	"A"		"A"	
OPEN	GND Lo	Hi	"B"		"B"	
GND	GND H	Hi	Inde		NA	
OPEN	OPEN Lo	Lo	Swit		NA	
GND	+V -Vsupply (see	witch drive spe	ble, th			
OPEN*	Maximum leakage	current of 50u	drive			
Hi	3.0 V to 12.0 V					
Lo	0.0 V to 1.0 V Wa * WARNING! Use WARNING! Min	ing drive leve adapter cable um switch sp		TTL drive witch drive	ircuit!	

Recommended indicator circuit

Pin out diagram

N1810TL

เ.,

Dimensions are nominal values in millimeters and inches, unless otherwise specified.

N1810TL

Switch drive specifications N1810TL, N1811TL, N1812UL

Option	Parameter		Conditions	Min	Nominal	Max	Units
105	Supply voltage			4.5	5	7.0	V
	Supply current		Supply volta		550		mA
115^{1}	Supply voltage			12.0	15	20.0	V
	Supply current		Supply volta		300		mA
124^{2}	Supply voltage			20.0	24	32.0	V
	Supply current		Supply volta		200		mA
TTL drive specifications							
Option	Parameter	Conditions		Min	Nominal	Max	Units
401	High level input			3.0		12.0	V
	Low level input			0.0		1.0	V
	Max input current		Input voltage			1.0	mA
			Input voltage		0.25	0.5	mA
Driving the switch*							
STD drive connect GND to ground		TTL drive connect GND to ground		RF state		INDICATOR state	
A	B	A	B				
GND	OPEN	Hi	Lo	"A"		"A"	
OPEN	GND	Lo	Hi	"B"		"B"	
GND	GND	Hi	Hi	Inde		NA	
OPEN	OPEN	Lo	Lo	Swit prev		NA	
GND	+V -Vsup	ee sw	witch drive sp	le, th			
OPEN*	Maximum	ge	current of 504	drive			
Hi	3.0 V to 1						
Lo	1.0 V to * WARN WARNI	Narn Use Minim	ing drive lev adapter cable um switch	$\begin{aligned} & 5 \mathrm{~V} \mathrm{w} \\ & 1 \text { with } \\ & \mathrm{n}(0.2 \end{aligned}$	TTL drive witch driv	ircuit!	

Recommended indicator circuit

Pin out diagram

Dimensions are nominal values in millimeters and Inches, unless otherwise specifled.

N1811TL

Recommended indicator circuit

Pin out diagram

N1812UL

Dimensions are nominal values in millimeters and inches, unless otherwise specified.

N1812UL

Recommended indicator circuit

Pin out diagram

Supplemental Characteristics

General operating characteristics — N181x series

Switching speed ${ }^{1}$	Repeatability	Life
$<15 \mathrm{~ms}$	0.03 dB to 1 million cycles	Impedance
0.1 dB to 2 million cycles cycles	50Ω	

Power derating factor versus VSWR

Reference conditions

- Cold switching only (NO hot switching)
- Ambient temperature of $75^{\circ} \mathrm{C}$ or less ${ }^{3}$
- Sea level (0.88 derating at $15,000 \mathrm{ft}$)
- Load VSWR < 1.2
(see graph for derating above 1.2 VSWR)

[^0]
Environmental

The switch is designed to fully comply with Keysight Technologies' product operating environment specifications. The following summarizes the environmental specifications for these products (Class B1).

Temperature 1	
Operating	-25 to $+75^{\circ} \mathrm{C}$
Storage	-55 to $+85^{\circ} \mathrm{C}$
Cycling	-55 to $+85^{\circ} \mathrm{C}, 10$ cycles per MIL-STD 202F, 170D, Condition A (modified)
Vibration	$7 \mathrm{~g}, 5-2000 \mathrm{~Hz}$ at $0.25 \mathrm{in} . \mathrm{p}-\mathrm{p}$
Operating	$20 \mathrm{~g}, 20-2000 \mathrm{~Hz}$ at $0.06 \mathrm{in} . \mathrm{p}-\mathrm{p}, 4 \mathrm{~min} / \mathrm{cycle}, 4$ cycles/axis
Survival	$2.41 \mathrm{~g}(\mathrm{rms}) 10 \mathrm{~min} / axis$.
Random	Half sine: 500 g at $0.5 \mathrm{~ms}, 3$ drops/direction, 18 total
Shock	50 g at $6 \mathrm{~ms}, 6$ directions
Operating	
Humidity	15 to 95% relative humidity
Operating	$65{ }^{\circ} \mathrm{C}, 95 \%$ RH, 10 days, MIL-STD 202F, Method 106 E
Storage	
Altitude	15,000 feet $/ 4.6 \mathrm{~km}$
Operating	50,000 feet $/ 15.3 \mathrm{~km}$, MIL-STD 202F, Method 105 C, Condition B
Storage	

[^1]| Troubleshoot guide | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Allowable range | | | | |
| Probable cause | Test | Low value | High value | Remedy |
| Not connected to supply | | See drive specifications | | Connect +V to power supply |
| Supply not turned on | | | | Turn on power supply |
| Supply voltage less than minimum | Measure voltage from control pin to +V | See drive specifications | | |
| Supply current low | Measure current draw with drive pin selected | See drive specifications | | Increase drive voltage or reduce drive line resistance |
| OPEN state leakage current too HIGH | Measure leakage current in OPEN state | | 50 uA | Select suitable driver that has low leakage current in OPEN state |
| Select lines not at ground (STD DRIVE) | Measure voltage from drive select pin to ground | | | Eliminate ground loops and lead high resistance |
| TTL "LOW" voltage too high | Measure voltage from ground pin to TTL drive pin | See drive specifications | | Connect ground pin to ground |
| TTL "LOW" voltage <0.0 volts | Measure voltage from ground pin to TTL drive pin | See drive specifications | | Eliminate ground loops |
| TTL GND pin not grounded | | | | Connect GND pin to ground |
| Driving switch with 87130A | | | | Use adapter cable 11764-60011 |

Ordering Information

Step	Option
Select a model to fit your application. (Required)	N1810UL - Unterminated latching 3-port
	N1810TL - Terminated latching 3-port
	N1811TL - Terminated latching 4-port
	N1812UL - Unterminated latching 5-port
Select a frequency range. (Required)	004 - DC to 4 GHz
	$020-$ DC to 20 GHz
	026 - DC to 26.5 GHz
Select a coil voltage level. (Required)	$105^{*}-5$ volts
	$115-15$ volts
	$124-24$ volts
Select a DC connector type. (Required)	201 - "D" subminiature 9 pin female
Select RF performance enhancements. (Optional)	202 - Solder lugs
	301 - Increased isolation
	302 - Reduced standing wave ratio and insertion loss
	UK6 - Calibration certificate with test data
Select drive options. (Optional)	401 - TTL/CMOS compatible 5 V drive
	$402-$ Position indicators

[^2]
Ordering example

For an unterminated 5 port switch, operating up to 20 GHz , with 15 volt coils, D-sub connector, high isolation, and TTL, the order should look as follows: N1812UL Option 020115201301401.

Related Literature

Keysight Technologies Bench and System Switching Products
Literature Number 5989-9872EN

Keysight RF and Microwave Switch
Selection Guide
Literature Number 5989-6031EN

Keysight 11713B/C Attenuator/Switch Drivers Configuration Guide
Literature Number 5989-7277EN

Application Notes

Power Handling Capability of Electromechanical Switches
Literature Number 5989-6032EN

How Operating Life and Repeatability of Keysight's Electromechanical Switches Minimize System Uncertainty
Literature Number 5989-6085EN

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

[^0]: 1. Option 105: Switching speed of 25 ms with operating temperature of -25 to -5 degree celcius Option 115 and 124: Switching speed of 25 ms with operating temperature of -25 to -15 degree celcius
[^1]: 1. Option 301: Storage and cycling temperature: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ Operating temperature: $-25^{\circ} \mathrm{C}$ to $+65{ }^{\circ} \mathrm{C}$
[^2]: * Includes options 402

