### КРИТИЧЕСКИЕ ПОТЕНЦИАЛЫ



## ПОРЯДОК ПРОВЕДЕНИЯ ОПЫТА

- Измерение зависимости тока коллектора I<sub>R</sub> от ускоряющего напряжения U<sub>A</sub>.
- Сравнение положений максимумов тока с известными критическими потенциалами атома гелия.
- Выявление дублетной структуры в схеме энергетических уровней гелия (ортогелий и парагелий).

#### ЦЕЛЬ ОПЫТА

Определение критических потенциалов атома гелия

#### КРАТКОЕ ОПИСАНИЕ

Выражение «критический потенциал» является общим названием всех энергий возбуждения и ионизации в электронных оболочках атома. Соответствующие состояния электронов можно возбудить различными способами, например, с помощью неупругих столкновений с электронами. Если кинетическая энергия электрона соответствует критическому потенциалу, электрон может потерять всю свою кинетическую энергию при неупругом столкновении. В этом опыте для определения критических потенциалов используется экспериментальная установка, изначально предложенная Густавом Герцем.

# НЕОБХОДИМОЕ ОБОРУДОВАНИЕ

| Кол-во | Наименование                                                                                        | № по каталогу   |
|--------|-----------------------------------------------------------------------------------------------------|-----------------|
| 1      | Трубка для определения критического потенциала возбуждения атомов модели S с гелиевым заполнением   | U18560          |
| 1      | Держатель электровакуумных приборов модели S                                                        | U185002         |
| 1      | Блок управления для трубок определения критического потенциала возбуждения атомов (230 B, 50/60 Гц) | U186501-230 или |
|        | Блок управления для трубок определения критического потенциала возбуждения атомов (115 B, 50/60 Гц) | U186501-115     |
| 1      | Источник питания постоянного тока, 0-20 В, 0-5 А (230 В, 50/60 Гц)                                  | U33020-230 или  |
|        | Источник питания постоянного тока, 0–20 В, 0–5 А (115 В, 50/60 Гц)                                  | U33020-115      |
| 1      | Универсальный цифровой измерительный прибор Р3340                                                   | U118091         |
| 1      | USB-осциллограф 2x50 МГц                                                                            | U112491         |
| 2      | Высокочастотный соединительный шнур, байонетный разъем/4-мм штекер                                  | U11257          |
| 1      | Набор из 15 безопасных соединительных проводов для опытов<br>длиной 75 см                           | U138021         |
| 1      | Прибор 3B NET <i>log</i> ™ (230 B, 50/60 Гц)                                                        | U11300-230 или  |
|        | Прибор 3B NET/og™ (115 B, 50/60 Гц)                                                                 | U11300-115      |
| 1      | Программное обеспечение 3B NET/ab™                                                                  | U11310          |

#### ОСНОВНЫЕ ПРИНЦИПЫ

Выражение «критический потенциал» является общим названием всех энергий возбуждения и ионизации в электронных оболочках атома. Соответствующие состояния электронов атома можно возбудить различными способами, например, с помощью неупругих столкновений с электронами. Если кинетическая энергия электрона в точности соответствует критическому потенциалу, электрон может передать всю свою кинетическую энергию атому при неупругом столкновении. С помощью экспериментальной установки, изначально предложенной Густавом Герцем, можно использовать этот эффект для определения критических потенциалов.

В трубке, из которой откачан воздух, и которая затем заполнена гелием, свободные электроны ускоряются напряжением  $U_{\rm A}$ , чтобы сформировать расходящийся пучок, проходящий сквозь пространство с постоянным потенциалом. Для того чтобы предотвратить накопление заряда на стенках трубки, ее внутренняя поверхность покрыта проводящим материалом и соединена с анодом A (см. рис. 1). В трубке имеется кольцеобразный электрод коллектора R, через который расходящийся пучок может проходить, не касаясь его, даже если кольцо имеет несколько более высокий потенциал.

Однако в коллекторном кольце можно замерить небольшой ток  $I_{\rm R}$ , порядка пикоампер, и этот ток будет зависеть от ускоряющего напряжения  $U_{\rm A}$ . Характеристика имеет максимумы, которые обусловлены тем, что электроны могут претерпевать неупругие столкновения с атомами гелия, когда они пролетают через трубку. Кинетическая энергия E электрона выражается следующим образом:

(1) 
$$E = e \cdot U_A$$
  $e$ : элементарный заряд электрона

Если эта энергия в точности соответствует критическому потенциалу атома гелия, вся кинетическая энергия может быть передана атому гелия. В этом случае электрон затем может быть притянут и захвачен кольцом коллектора, тем самым внеся вклад в возросший ток коллектора  $I_{\rm R}$ . По мере увеличения ускоряющего напряжения, могут возбуждаться все более и более высокие уровни атома гелия, пока, наконец, кинетическая энергия электрона не станет достаточной для ионизации атома гелия. При дальнейшем увеличении ускоряющего напряжения ток коллектора устойчиво увеличивается.

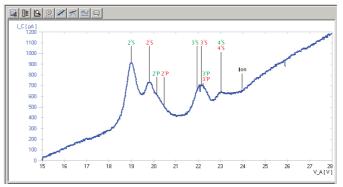



Рис. 3: Зависимость тока коллектора  $I_{\mathsf{R}}$  от ускоряющего напряжения  $U_{\mathsf{A}}$ 

## ОЦЕНОЧНЫЙ РАСЧЕТ

Положения наблюдаемых максимумов тока сравниваются с известными значениями энергий возбуждения и энергии ионизации атома гелия. Необходимо принять во внимание тот факт, что максимумы будут сдвинуты по отношению к известным значениям на величину, соответствующую так называемому контактному напряжению между катодом и анодом.

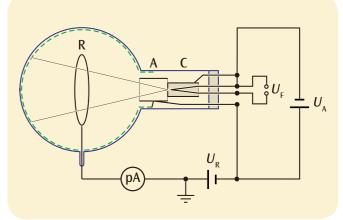



Рис. 1: Схема трубки для определения критического потенциала возбуждения атомов

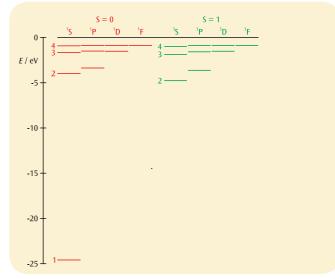



Рис. 2: Схема энергетических уровней гелия красный: общий спин S=0 (парагелий), зеленый: общий спинS=1 (ортогелий)

3