advanced

**PHYWE** 

# The Darlington circuit (Item No.: P1402000)



## **Principle and equipment**

## Principle

It is to be shown that current amplification can be substantially increased by the combination of two transistors in a Darlington circuit.





Printed: 30/11/2017 10:29:45 | P1402000



## Equipment

| Position No. | Material                                                                    | Order No. | Quantity |
|--------------|-----------------------------------------------------------------------------|-----------|----------|
| 1            | Multimeter ADM2, demo., analogue                                            | 13820-01  | 2        |
| 2            | PHYWE power supply, universal DC: 018 V, 05 A / AC: 2/4/6/8/10/12/15 V, 5 A | 13500-93  | 1        |
| 3            | Demo Physics board with stand                                               | 02150-00  | 1        |
| 4            | Transistor BC337,module DB                                                  | 09456-00  | 2        |
| 5            | Clamp on holder                                                             | 02164-00  | 1        |
| 6            | Connector interrupted, module DB                                            | 09401-04  | 2        |
| 7            | Junction, module DB                                                         | 09401-10  | 2        |
| 8            | Resistor 100 Ohm,module DB                                                  | 09413-10  | 1        |
| 9            | Photodiode,module DB                                                        | 09453-00  | 1        |
| 10           | Connector, straight, module DB                                              | 09401-01  | 2        |
| 11           | Connector, angled, module DB                                                | 09401-02  | 4        |
| 12           | Connector, T-shaped, module DB                                              | 09401-03  | 2        |
| 13           | Boss head                                                                   | 02043-00  | 1        |
| 14           | Universal clamp                                                             | 37715-00  | 1        |
| 15           | Support rod, stainless steel, 500 mm                                        | 02032-00  | 1        |
| 16           | Flashlight, w/o battery,medium                                              | 08164-00  | 1        |
| 17           | Connecting cord, 32 A, 1000 mm, red                                         | 07363-01  | 3        |
| 18           | Connecting cord, 32 A, 1000 mm, blue                                        | 07363-04  | 3        |
| 19           | Battery cell, 1.5 V, baby size, type C                                      | 07922-01  | 2        |



## Set-up and procedure

## 1st. Experiment

- Label the transistors as T  $_1$  and T  $_2$
- Set up the experiment as shown in Fig. 1 with transistor  $T_1\,$  ; select the 1 0 IJA measurement range for the measuring instrument in the base circuit
- Select the 3 mA measurement range for the measuring instrument in the collector circuit
- Set the power supply to a voltage of 6 V-
- Fix the torch to the edge of the board with the holding material and use it to so light the photodiode, that the photocurrent does not exceed the value of  $I_B=5\mu A$
- Note the values measured for the base current and the collector current of the transistor
- Repeat this procedure using transistor T <sub>2</sub>



#### **2nd. Experiment**

- Extend the experimental set-up as shown in Fig. 2 and switch over to the 100 mA measurement range for the collector current I  $_{\rm cp}$
- Note the value measured for the collector current I  $_{\rm cd}\,$  of the Darlington circuit
- Illuminate the photodiode as in the 1st. experiment; note the value measured for the base current I  $_{\rm RD}$  of the Darlington circuit

Student's Sheet







## **Observation and evaluation**

### Observation

 $\stackrel{I_{\rm CD}}{I_{\rm BD}}= \begin{array}{c} 51 \text{ mA} \\ I_{\rm BD}= 0.4 \ \mu A \end{array}$ 

| Table 1        |                            |                            |  |  |
|----------------|----------------------------|----------------------------|--|--|
| Transistor     | Base current               | Collector current          |  |  |
| T <sub>1</sub> | $I_{ m B1}{=}3\mu A$       | $I_{ m C1}{=}1.25~{ m mA}$ |  |  |
| T <sub>2</sub> | $I_{\mathrm{B2}}{=}3\mu A$ | $I_{ m C2}{=}0.85~{ m mA}$ |  |  |

### **Evaluation**

The photocurrent of the photodiode is amplified by transistor  $T_1$  from  $I_{B1} = 3 \ \mu A$  auf  $I_{C1} = 1,25 \ mA$ . When the circuit is expanded to a Darlington circuit by a second transistor, then the current is amplified further from  $I_{C1} = 1,25 \ mA$  to  $I_{CD} = 51 \ mA$ . The current has so been increased by a factor of approx. 17,000.

In a Darlington circuit, the emitter current that is amplified by the first transistor is used as base current for the second transistor, where further amplification occurs. The total current amplication of a Darlington circuit is approximately equal to the product of the current amplifications of the individual transistors:

 $B_{\rm ges} \approx B_1 \cdot B_2$ 

| Table 2            |                                                 |  |  |  |
|--------------------|-------------------------------------------------|--|--|--|
| Transistor         | Amplification                                   |  |  |  |
| T <sub>1</sub>     | $B_1 = rac{I_{Cl}}{I_{Bl}} = 417$              |  |  |  |
| T <sub>2</sub>     | $B_2 = rac{I_{C2}}{I_{B2}} = 283$              |  |  |  |
| Darlington circuit | ${B}_{tot}\!=\!rac{I_{CD}}{I_{BD}}\!=\!127500$ |  |  |  |
|                    | $B_1 \cdot B_2 = 118000$                        |  |  |  |

### Remarks

The amplification values of the transistors used can differ greatly from each other. For this reason, the measured values determined may differ greatly from those given here. The 100  $\Omega$  resistor serves to limit the collector current and so to hinder thermal destruction of the transistors.