Linear expansion of metals (Item No.: P1042900)

Task and equipment

Information for teachers

Additional Information

Metal tubes are heated with steam. The linear expansion of three different metals is determined with the aid of a rotating-shaft pointer. From this the metals' coefficient of linear expansion is determined (Supplementary problem). The use of a rolling-shaft pointer is advantageous because the resulting indication of expansion is frictionless. The functional principle of a rotating-shaft pointer can be easily demonstrated in a simple experiment and studied by the students (see Question 4). The students should do this before they calculate the change in length ΔI in "Evaluation".

Remarks

- 1. The setup must not be touched while the tube is being heated; otherwise, the sensitive pointer will be displaced.
- 2. No condensed water must accumulate in front of or in the metal tube; otherwise the tube will not be heated to a uniform 100 °C.
- 3. The pointer's deflection must be marked as an extension of the pointer (see Fig. 22).

Notes to the angle determination

The angle φ , which is formed by the pointer's deflection s, can best be determined using the scale in the figure. This scale only applies for a pointer length (to the table surface) of l = 10.5 cm. The angle can also be calculated with the formula

 $\tan \varphi = s/l.$

For this calculation the distance $\Delta l/2$ is neglected with reference to *s*.

The students should test the functional principle of the rotating-shaft pointer, e.g. by rolling it through an angle of 360° with a ruler (see Fig. 3), and by doing so determine the following: Movement of the ruler $\Delta I = 2.5$ cm.

Movement of the rotating-shaft pointer $\Delta l = 1.25$ cm. In general:

 $\Delta l/2 = 2\pi \times r \times \varphi/360^\circ.$

Robert-Bosch-B D - 37079 Götti Tel: +49 551 604 - 0 Fax: +49 551 604 - 107 **HYWE**

Teacher's/Lecturer's Sheet

Printed: 24/07/2019 17:39:59 | P1042900

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Linear expansion of metals (Item No.: P1042900)

Task and equipment

Task

How does the expansion of metals change during heating?

Measure the expansion of steel, brass and aluminium while heating them from room temperature to 100 °C.

Equipment

Position No.	Material	Order No.	Quantity
1	Support base, variable	02001-00	1
2	Support rod, stainless steel, I = 250 mm, d = 10 mm	02031-00	1
2	Support rod, stainless steel, I = 600 mm, d = 10 mm		2
3	Boss head		3
4	Ring with boss head, i. d. $= 10$ cm	37701-01	1
4	Universal clamp	37715-00	1
5	Wire gauze with ceramic, 160 x 160 mm	33287-01	1
6	Beaker, low form, plastic, 100 ml	36011-01	1
7	Erlenmeyer flask 100 ml, wide-neck SB 29	36428-00	1
8	Glass tube, straight, l=80 mm, 10/pkg.	36701-65	(1)
8	Students thermometer,-10+110°C, l = 180 mm	38005-02	1
9	Rubber stopper 26/32, 1 hole 7 mm	39258-01	1
10	Measuring tape, I = 2 m	09936-00	1
10	Silicone tubing i.d. 7mm	39296-00	1
11	Collar for linear expansion	04231-55	1
12	Brass tube	04234-01	1
12	Aluminium tube	04234-03	1
12	Iron tube	04234-02	1
13	Rotating shaft with pointer	04236-01	1
	Butane burner, Labogaz 206 type	32178-00	1
	Butane cartridge C206, without valve	47535-01	1
	Glycerol, 250 ml	30084-25	1
	Boiling beads, 200 g	36937-20	1
Additional material			
	Matches		
	Felt-tip pen		1
	Sheet of paper (approx, 100 mm x 50 mm)		1

Robert-Bosch-Breite 10 D - 37079 Göttingen

advanced

Set-up and procedure

Set-up

Warning!

- 1. Always insert the thermometer or glass tubes into the rubber stopper using glycerol.
- 2. During the heating of the water the support ring and the wire gauze get extremely hot!
- 3. The metal tube is hot, steam escapes at its end!
- 4. The setup must not be touched during the course of the experiment; otherwise, the sensitive pointer will be displaced.

Setup

• Set up the support stand according to the following pictures.

Printed: 24/07/2019 17:39:59 | P1042900

Fig. 4

Fig. 5

Fig. 6

Fig. 7

• Place the collar for linear expansion in the notch (spout side) on the aluminium tube.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Printed: 24/07/2019 17:39:59 | P1042900

• Attach the tube on the other side of the location of the notch in the bosshead.

- The metal tube should be slightly slanted so that condensed water vapour (steam) can run out.
- For this reason attach the bosshead on the spout side so that it touches the collar.

Fig. 12

• Place the rotating shaft with pointer between the bosshead and the collar.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

• Select the height of the metal tube so that the pointer tip is as close to the table surface as possible.

• Place the beaker under the tube's spout.

• Fill the Erlenmeyer flask half-full with water and add two beads.

Fig. 16

Fig. 17

• Insert the glass tube into the stopper and seal the flask.

Printed: 24/07/2019 17:39:59 | P1042900

Fig. 18

Fig. 19

Fig. 20

• Position the tubing in such a way that no condensed water accumulates in front of the tube.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Printed: 24/07/2019 17:39:59 | P1042900

Procedure

- Under the pointer's tip tape a piece of paper (approx. 5 cm x 10 cm) to the table.
- Set the pointer perpendicular and mark the initial position of the pointer's tip.

Fig. 21

- Measure the pointer's length from its pivot point to the table top. This distance / should be 10.5 cm. If it is not, correct your experimental setup.
- Measure the room temperature ϑ_0 and record it in the report.
- Bring the water to a boil.
- Wait until condensed water and steam escape from the tube.
- Watch the pointer until it stops moving.
- Mark the pointer's new position (distance *s* in Fig. 2: use your ruler to determine where the point would now touch the paper).
- Turn off the burner, wait until the tube has cooled somewhat and then repeat the experiment with other tubes (remove the hot tube with a cloth).

advanced

PHYWE

Report: Linear expansion of metals

Result - Observations 1

1.	Length of the metal tube:	$l_0 = 50 \text{ cm}$	
2.	Temperature of the heated tube:	$\vartheta_1 = 100 \ ^\circ \text{C}$	
3.	Radius of the pointer's rotating shaf	t: $r = 0.2 \text{ cm}$	
4.	Length of the pointer (to table top):	l = 10,5 cm	
5.	Room temperature:	$\vartheta_0 =$	٥С

Result - Table 1

- 1. For each of the three metal tubes measure the pointer's deflection s on the sheet of paper and record them in the table.
- 2. Determine the angle φ (in degrees) for each pointer deflection *s* (in cm) with the aid of the scale in the figure 23 and record it in the table.
- 3. When the metal tube expanded by the length Δl , the rotating pointer moved a distance $\Delta l/2$ further. The arc of angle is therefore as large as the distance $\Delta l/2$:

$\Delta l/2 = 2\pi \cdot r \cdot \phi/360^{\circ}$

Calculate the linear expansion Δl for the different metal tubes and record it in the table.

Material	<i>s</i> in cm	φ in Degrees	∆/ in cm
Aluminium	1	1	1
	±0	±0	±0
Brass	1	1	1
	±0	±0	±0
Iron	1	1	1
	±0	±0	±0

Printed: 24/07/2019 17:39:59 | P1042900

Evaluation - Question 1

Compare the metals in terms of their expansion, i.e. arrange them in order of decreasing expansion.

Evaluation - Question 2

Compare the thermal expansion of metals to that of liquids or gases.

Robert-Bosch-Breite 10 D - 37079 Göttingen

Printed: 24/07/2019 17:39:59 | P1042900

Evaluation - Additional Task 1

The linear expansion Δl is a function of the temperature difference $(\vartheta_1 - \vartheta_0)$ and of the total length l_0 . Could this be shown with your experimental setup?

Evaluation - Additional Task 2

The linear expansion of rods and tubes is characterised by the coefficient of linear expansion α . It is expressed by the equation:

$\Delta l = \alpha \, l_0 \, (\vartheta_1 - \vartheta_0).$

Calculate the coefficient $\boldsymbol{\alpha}$ and record it in the table.

	Literature value	
Material	α in 10 ⁻⁶ /°C	α in 10 ⁻⁶ /°C
Aluminium	23,7	23
Brass	18,3	17
Iron	10	11

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107