Block and tackle with four pulleys (Item No.: P1001100)

Task and equipment

Information for teachers

Additional Information

Using a block and tackle as an example, the students should observe that the force, which is necessary to lift a given load, decreases in direct correlation with the number of pulleys.

- 1. They should determine how much larger the weight force of the load is compared to the force which is necessary to maintain equilibrium, and whether there is a connection between this and the number of pulleys of a block and tackle.
- 2. They should investigate whether the load distance differs from the force distance and form the product $F \times s$. Additionally, they should be able to say whether the number of pulleys is important here, too.

Remarks

- 1. The term "(slotted) weight" is incorrect inasmuch as we are dealing with a mass which becomes a weight (or more precisely a "weight force") under the influence of gravity. The term "mass piece" used here is better.
- 2. Physically speaking, the product $F \ge s = W$ represents work. In this context one can introduce the terms "lifting work" and the "laws of conservation of force" in preparation for experiment Work on an inclined plane (P1001400).
- 3. In industrial versions of a block and tackle, the pulleys are arranged not in vertical pairs but rather in horizontal ones. For this type of arrangement the names "shells" or "blocks" are used.

CHYWE

Block and tackle with four pulleys (Item No.: P1001100)

Task and equipment

Task

How can heavy loads be lifted more easily?

A block and tackle consists of a combination of one fixed and one movable pulley or several fixed and movable pulleys. In this experiment a block and tackle with 2 fixed and 2 movable pulleys will be investigated.

You will determine experimentally how much force is required to lift a load with the block and tackle. Then you will investigate how long the force distance must be to lift a load a specific distance (this is called the load distance).

Equipment

Position No.	Material	Order No.	Quantity
1	Support base, variable	02001-00	1
2	Support rod, stainless steel, I = 600 mm, d = 10 mm	02037-00	1
2	Support rod with hole, stainless steel, 10 cm	02036-01	1
3	Boss head	02043-00	2
4	Weight holder for slotted weights	02204-00	1
5	Slotted weight, black, 10 g	02205-01	4
5	Slotted weight, black, 50 g	02206-01	3
6	Rod for pulley	02263-00	1
7	Spring balance,transparent, 2 N	03065-03	1
8	Spring balance holder	03065-20	1
8	Measuring tape, I = 2 m		1
10	Fishing line, l. 20m	02089-00	1
11	Pulleys, double in line	02266-00	2
Additional material			
	Scissors		1
	Felt-tip pen		

Set-up and procedure

Set-up

• Before you set up the experiment, determine the weight (force) F_r of a double pulley with the spring balance (Fig. 1) and record the value in the report.

- Screw the splitt 600 mm support rod together (Fig. 2). Set up a stand with the support base (Fig. 3), the 600 mm support rod (Fig. 4) and the bosshead (Fig. 5).
- Fix the pulley into the pulley rod (rod for pulley) (Fig. 6) and attach the rod to the bosshead.

- Fix a second bosshead to the lower part of the 600 mm support rod (Fig. 7).
- Insert the spring balance holder into the short rod (Fig. 8) and clamp the latter into the bosshead (Fig. 9).

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

- Attach a piece of fish line of approx. 110 cm length to the hook of the upper, fixed pulley (Fig. 10).
- Thread the line through the 4 pulleys as shown in Fig. 11 14.

• Make a loop in the free end, hook the spring balance into it and clamp the spring balance into the spring balance holder as shown in Fig. 15.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Procedure

Part 1

• Load the block and tackle with a mass of 50 g (weight holder and four 10 g mass pieces) (Fig. 16).

- Read the force F on the spring balance and enter the value in Table 1 in the report.
- Repeat the force measurements with 100 g, 150 g and 200 g masses as loads.
- Record all the measured values in Table 1 in the report.

Part 2

- Exchange the 110 cm fish line by a piece of fish line of approx. 4 5 m length (Fig. 17). Make sure you thread the fish line through the 4 pulleys exactly the same way as in Part 1.
- Load the block and tackle with a total mass of 150 g. The load should rest on the floor (if the load does not reach the floor you will have to use a longer piece of fish line).

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

• Mark the fish line at a certain point of the setup, e.g. the support base, with a marker (Fig. 18).

- Pull the line until the load has reached the upper edge of the table top and attach it to the spring balance; then mark the line with the marking at the same point of the setup as before.
- Read the force *F* hat now can be seen on the spring balance (cp. part 1).
- Measure the length of the line between the two markings (force distance *s*_f) and the distance between the floor and the upper edge of the table top (load distance *s*_l).
- Record all the measured values in Table 2 in the report.

advanced

Report: Block and tackle with four pulleys

Results - Part 1

Enter the weight (force) F_r of the double pulley here:

*F*_r = _____ N

Results - Table 1

Enter measured values in the table 1.

From the mass *m* and the weight force F_r of the double pulley, calculate the total weight (force) F_g and paste it into the table 1. Use the formula $F_g = m \times g + F_r$, where $g = 9.81 \text{ m/s}^2$.

Form the quotients F_q / F and record the values in table 1, too.

<i>m</i> in g	<i>F</i> in N	F _g in N	F _g / F
50	1	1	1
	±0	±0	±0
100	1	1	1
	±0	±0	±0
150	1	1	1
	±0	±0	±0
200	1	1	1
	±0	±0	±0

Printed: 13.04.2017 11:59:56 | P1001100

Evaluation Part 1 - Question 1

Is it easier to lift a load directly or with the help of a block and tackle?

Evaluation Part 1 - Question 2

How many fixed and how many movable pulleys does the block and tackle have?

Robert-Bosch-Breite 10 D - 37079 Göttingen

.....

Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Printed: 13.04.2017 11:59:56 | P1001100

Evaluation Part 1 - Question 3

Is there a correlation between the quotients F_{g} / F and the number of pulleys? If so, what is it?

Results - Table 2

Enter measured values in the table 2.

The value for F_g can be taken from Table 1 or calculated using the formula $F_g = m \times g + F_r$. Add the value obtained to table 2.

Calculate the quotient $s_{\rm l}$ / $s_{\rm f}$ (load distance / force distance) and record the value in table 2, too.

<i>m</i> in g	F _g in N	<i>s</i> l in cm	<i>s</i> f in cm	s _l / s _f	<i>F</i> in N
150	1 ±0	1 ±0	1 ±0	1 ±0	1 ±0

Printed: 13.04.2017 11:59:56 | P1001100

Evaluation Part 2 - Question 1

What can you say about the force that is necessary to lift the load?

Evaluation Part 2 - Question 2

Form the following products:

 $F \ge s_f = \dots \otimes N$ cm

 $F_{\rm g} x s_{\rm l} = ... \rm N cm$

What do you notice?

Robert-Bosch-Breite 10 D - 37079 Göttingen

.....

Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Printed: 13.04.2017 11:59:56 | P1001100

Evaluation Part 2 - Question 3

Is the following relation valid here, too?

load \times load distance = force \times force distance

Evaluation Part 2 - Question 4

On another block and tackle, the force necessary to lift the load is six times smaller than the weight force of the load. What is the quotient force distance / load distance in this case?

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Printed: 13.04.2017 11:59:56 | P1001100

Evaluation Part 2 - Question 5

How many pulleys must such a block and tackle have?

Robert-Bosch-Breite 10 D - 37079 Göttingen

.....

Tel: +49 551 604 - 0 Fax: +49 551 604 - 107