Forces on a pulley mounting (Item No.: P0999700)

Task and equipment

Information for teachers

Additional Information

The students should

- 1. With the aid of a pulley deflect a weight (force) and measure the resultant force F_r acting on the mounting of the pulley.
- 2. Change the angle α between the weight (force) F_g and the deflected force F_1 and once again determine the resultant force.

In a supplementary problem the students who are familiar with the trigonometric functions should calculate the resultant force F_r using F_1 , F_q and the angle α .

The protractor sheet (circle with angular divisions) which is required for the evaluation is provided as a master which can be copied. The xerox copies should be given to the students before they begin the experiment.

Robert-Bosch-Breite 10 D - 37079 Göttingen *PHYWE*

advanced

Forces on a pulley mounting (Item No.: P0999700)

Task and equipment

Task

What forces act on a deflection pulley?

With the aid of a pulley a weight (force) is deflected and the resultant force acting on the mounting of the pulley is measured. The angle between the weight (force) and the deflected force is changed and once again the resultant force is measured.

Equipment

Set-up and procedure

Set-up

Procedure

- Load the weight holder with 3 mass pieces ($m_{tot.} = 40$ g) and align the 2 N spring balance so that it is exactly horizontal (Fig. 9).
- Be sure that the mass is suspended and that the line can move freely.
- For hanging the slotted weight up the weight holder, you should slip the slotted weight over the top of the weight holder (Fig. 10).

- Read both spring balances and record the measured values for the deflected force F_1 and the resultant force F_r on the pulley ($\alpha = 90^\circ$).
- Change the angle α between the weight (force) F_g and F_1 by, first, moving the holder of the 2 N spring balance to the top of and, then, to the bottom of its support rod. Set the angles as nearly as possible to the values in Table 1 in the report.
- In each position hold the protractor sheet so that its center is at the intersection of the two force axes.
- For each position, i.e. every angle α , read the forces F_r and F_1 and record the values in Table 1, too.

Fig. 11: Example for measuring $\alpha = 90^{\circ}$.

Fig. 12: Overview of the experimental setup for $\alpha = 120^{\circ}$.

Example for measuring α = 70° (Fig. 13 and Fig. 14).

Remove the 2 N spring balance from its holder and pull it downward, parallel to F_g ($\alpha = 0^\circ$) (Fig. 15). Record these in Table 1.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

advanced

PHYWE

Report: Forces on a pulley mounting

Results - Table 1

Record all the measured values in Table 1.

angle α in °	F ₁ in N	F _r in N
90	1 ±0	1 ±0
120	1 ±0	1 ±0
105	1 ±0	1 ±0
70	1 ±0	1 ±0
50	1 ±0	1 ±0
0	1 ±0	1 ±0

Evaluation - Question 1

Calculate the weight (force) F_{g} from the mass m and record the value in the input box.

*F*_g = ____ N

Evaluation - Question 2

Compare the measured values for the forces F_r and F_g . Are they equal? Which is larger?

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Printed: 13.04.2017 11:57:11 | P0999700

Evaluation - Question 3

Do you have to consider the weight of the pulley?

Evaluation - Question 4

How large is it? Measure it with a spring balance.

Robert-Bosch-Breite 10 D - 37079 Göttingen

Printed: 13.04.2017 11:57:11 | P0999700

Evaluation - Question 5

For which of the angles α is the force F_r the largest?

Evaluation - Question 6

For which angle is it the smallest?

Robert-Bosch-Breite 10 D - 37079 Göttingen

Printed: 13.04.2017 11:57:11 | P0999700

Evaluation - Question 7

How do you explain this?

Auswertung - Frage 8

Draw the force parallelograms for the angles 70° and 120° on a separate sheet of paper. Determine the resultant force F_r from them and compare it with the measured results in the Table. Decide on a suitable scale before you begin drawing, e.g. 1 N corresponds to 10 cm.

.....

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107

Printed: 13.04.2017 11:57:11 | P0999700

Evaluation - Additional Task 1

Calculate F_r for 3 angles α with the formula mentioned above using the two forces F_1 and F_q :

Evaluation - Additional Task 2

Compare these results with your measured values! What do you notice?

Printed: 13.04.2017 11:57:11 | P0999700

Evaluation - Additional Task 3

What does the force parallelogram look like for $\alpha = 90^{\circ}$ when you consider the weight (force) of the pulley? Sketch this parallelogram on the scribble.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107