
КРУТИЛЬНЫЙ МАЯТНИК ПОЛЯ

ПОРЯДОК ПРОВЕДЕНИЯ ОПЫТА

- Измерение зависимости амплитуды вынужденных колебаний от частоты возбуждения при различных степенях демпфирования.
- Наблюдение за фазовым сдвигом между возбуждением и фактическим колебанием при очень малых и очень больших частотах возбуждения.

ЦЕЛЬ ОПЫТА

Измерение и анализ вынужденных гармонических крутильных колебаний

КРАТКОЕ ОПИСАНИЕ

Колесо Поля, или крутильный (вращательный) маятник, позволяет исследовать вынужденное гармоническое крутильное колебание. Для этого колебательная система подключается к системе возбуждения, которая приводится в действие электродвигателем постоянного тока с регулируемой скоростью, так что возвратная пружина периодически растягивается и сжимается. В этом опыте измеряется зависимость амплитуды от частоты возбуждения при различных степенях демпфирования и наблюдается фазовый сдвиг между возбуждением и фактическим колебанием.

НЕОБХОДИМОЕ ОБОРУДОВАНИЕ		
Кол-во	Наименование	№ по каталогу
1	Крутильный маятник Поля	U15040
1	Механический секундомер на 15 мин.	U40801
1	Сетевой адаптер 24 В, 0,7 А (230 В, 50/60 Гц)	U33200-230 или
	Сетевой адаптер 24 В, 0,7 А (115 В, 50/60 Гц)	U33200-115
1	Источник питания постоянного тока с напряжением $$ 0–20 B, 0 – 5 A (230 B, 50/60 Γ ц)	U33020-230 или
	Источник питания постоянного тока с напряжением $$ 0– 20 B, 0 – 5 A (115 B, 50/60 Гц)	U33020-115
2	Универсальный аналоговый измерительный прибор АМ50	U17450
1	Набор из 15 безопасных соединительных проводов для опытов длиной 75 см	U138021

ОБЩИЕ ПРИНЦИПЫ

Колесо Поля, или крутильный (вращательный) маятник, позволяет исследовать вынужденное гармоническое крутильное колебание. Для этого колебательная система подключается к системе возбуждения, которая приводится в действие электродвигателем постоянного тока с регулируемой скоростью, так что возвратная пружина периодически растягивается и сжимается.

Уравнение движения для этой системы выглядит следующим образом

(1)
$$\frac{d^2 \varphi}{dt^2} + 2 \cdot \delta \cdot \frac{d\varphi}{dt} + \omega_0^2 \cdot \varphi = A \cdot \cos(\omega_E \cdot t)$$

ГДе
$$\delta = \frac{k}{2J} \,, \;\; \omega_0^2 = \frac{D}{J} \,, \;\; A = \frac{M_0}{J}$$

D: жесткость пружины

k: коэффициент демпфирования M_0 : амплитуда внешнего крутящего момента

J: момент инерции

 ω_E : угловая частота внешнего крутящего момента

Решение этого уравнения состоит из однородной и неоднородной

составляющих. Однородная составляющая эквивалентна движению простого гармонического колебания с демпфированием, которое исследовалось в опыте UE1050500. Оно убывает экспоненциально с течением времени, и по истечении некоторого короткого периода стабилизации им можно пренебречь по сравнению с неоднородной составляющей.

Неоднородная составляющая

(2)
$$\varphi(t) = \varphi_{\mathsf{E}} \cdot \cos(\omega_{\mathsf{E}} \cdot t - \psi_{\mathsf{E}})$$

связана с внешним крутящим моментом, и пренебречь ею нельзя, пока этот момент присутствует: Ее амплитуда выражается следующим образом:

(3)
$$\varphi_{E} = \frac{A_{0}}{\sqrt{\left(\omega_{0}^{2} - \omega_{E}^{2}\right)^{2} + 4 \cdot \delta^{2} \cdot \omega}}$$

Она становится тем больше, чем ближе частота возбуждения $\omega_{\rm E}$ к собственной резонансной частоте ω_0 крутильного маятника. Резонанс наблюдается при $\omega_{\rm E}$ = ω_0 . Фазовый сдвиг показан ниже:

(4)
$$\psi_{E} = \arctan\left(\frac{2 \cdot \delta \cdot \omega_{E}}{\omega_{0}^{2} - \omega_{E}^{2}}\right)$$

Он показывает, что отклонение маятника отстает от возбуждения. При низких частотах он близок к нулю, но по мере увеличения частоты он возрастает, достигая 90° на частоте резонанса. При очень высоких частотах возбуждения частоты возбуждения и колебания в конце концов оказываются в противофазе (сдвинуты на 180°).

ОЦЕНОЧНЫЙ РАСЧЕТ

Строится график зависимости амплитуд демпфируемых колебаний от частоты возбуждения. В результате получается набор кривых, которые можно описать уравнением (4), если выбран соответствующий параметр демпфирования δ .

Будут наблюдаться небольшие отклонения от значений демпфирования, полученных в опыте UE1050500. В основном это объясняется тем фактом, что сила трения не строго пропорциональна скорости, как предполагается в данном опыте.

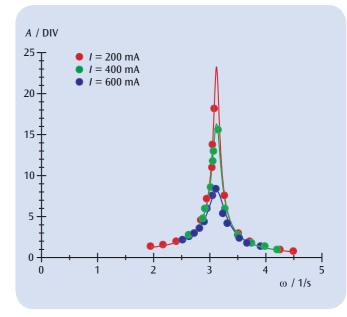


Рис. 1: Кривые резонанса для различных степеней демпфирования