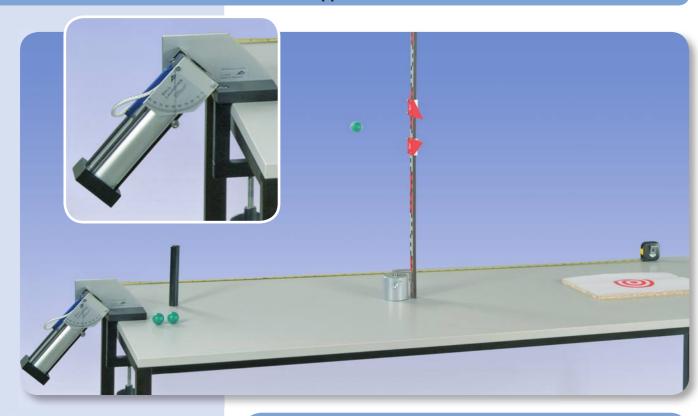
ПУСК ПОД УГЛОМ



ПОРЯДОК ПРОВЕДЕНИЯ ОПЫТА

- Измерение ширины траектории в зависимости от угла, под которым брошен шарик, и его начальной скорости.
- Расчет начальной скорости по максимальной ширине траектории.
- Поточечное построение

 «параболической» траектории в
 зависимости от угла, под которым
 брошен шарик, и его начальной скорости.
- Проверка принципа суперпозиции.

ЦЕЛЬ ОПЫТА

Поточечное построение «параболических» траекторий.

КРАТКОЕ ОПИСАНИЕ

Движение шарика, который брошен вверх под углом к горизонтальной поверхности в поле тяготения Земли, происходит по параболической траектории, чья высота и ширина зависят от угла, под которым брошен шарик, и его начальной скорости. Кривая измеряется точка за точкой с помощью шкалы высот с двумя маркерами.

НЕОБХОДИМОЕ ОБОРУДОВАНИЕ		
Кол-во	Наименование	№ по каталогу
1	Метатель	U10360
1	Зажим для метателя	U10361
1	Вертикальная линейка длиной 1 м	U8401560
1	Набор передвижных маркеров для линеек	U8401570
1	Тяжелая круглая опора весом 900 г	U13265
1	Карманная рулетка длиной 2 м	U10073

1

ОСНОВНЫЕ ПРИНЦИПЫ

В соответствии с принципом суперпозиции, движение шарика, брошенного вверх под углом к горизонтальной плоскости в поле тяготения Земли, представляет собой сочетание движения с постоянной скоростью в направлении броска и падения под действием силы тяжести. В результате этого получается параболическая кривая полета, чья высота и ширина зависят от угла α , под которым брошен шарик, и его начальной скорости ν_0 .

Для расчета теоретической кривой полета для простоты примем центр сферического шарика за точку начала системы координат и пренебрежем сопротивлением трения шарика о воздух. Тогда шарик сохраняет свою начальную скорость в горизонтальном направлении,

(1)
$$v_{x}(0) = v_{0} \cdot \cos \alpha$$

и, следовательно, в момент времени t расстояние, которое шарик пролетит по горизонтали, составляет

(2)
$$x(t) = v_0 \cdot \cos \alpha \cdot t$$

В вертикальном направлении под действием поля тяготения шарик испытывает ускорение свободного падения g. Поэтому в момент времени t его вертикальная скорость равна

(3)
$$v_{v}(t) = v_{0} \cdot \sin \alpha - g \cdot t$$

а пройденное по вертикали расстояние составляет

(4)
$$y(t) = v_0 \cdot \sin \alpha \cdot t - \frac{1}{2} \cdot g \cdot t^2$$

Кривая полета шарика имеет форму параболы, поскольку она подчиняется уравнению

(5)
$$y(x) = \tan \alpha \cdot x - \frac{1}{2} \cdot \frac{g}{(y_0 \cdot \cos \alpha)^2} \cdot x^2$$

В момент времени t_1 , определяемый выражением

$$t_1 = \frac{v_0 \cdot \sin \alpha}{g}$$

шарик достигает наивысшей точки параболы, а в момент времени t_2 , определяемый выражением

$$t_2 = 2 \cdot \frac{v_0 \cdot \sin \alpha}{g}$$

он вновь оказывается на начальной высоте О. Таким образом, высота параболы составляет

 $h = y(t_1) = \frac{v_0^2}{2 \cdot g} \cdot \sin^2 \alpha$

а ее ширина равна

ирина равна
$$s = x(t_2) = 2 \cdot \frac{v_0^2}{g} \cdot \sin\alpha \cdot \cos\alpha$$

(9)

(8)

В этом опыте с помощью шкалы высот с двумя маркерами поточечно измеряются кривые полета шарика в зависимости от угла бросания и начальной скорости.

ОЦЕНОЧНЫЙ РАСЧЕТ

Максимальная ширина всех кривых полета, $s_{\text{макс}}$, достигается при угле бросания α , равном 45°. По этой максимальной ширине можно рассчитать начальную скорость. С помощью уравнения 9 получаем

$$v_0 = \sqrt{g \cdot s_{\text{max}}}$$

Точный анализ экспериментальных данных показывает, что необходимо учесть сопротивление трения при движении шарика в воздухе и что кривые полета фактически несколько отклоняются от строгой параболы.



Рис. 1: Кривые полета при наименьшей начальной скорости и различных углах бросания, полученные опытным путем и рассчитанные теоретически с учетом трения о воздух.