M9379A RF Amplifier

Overview

The M9379A RF Amp Module includes two amplifiers, RF switches, and a programmable step attenuator designed to operate with the M9485A and M980xA PXIe vector network analyzer (VNA). One of the internal amplifiers works as a programmable pre-amp containing two user-selectable paths, either an amplifier path with a variable gain using a step attenuator or bypass path.

The M9379A can improve the noise floor of the measurement system with the M980xA PXIe VNA. For example, the M9379A with a pre-amp is an ideal solution for noise figure (NF) measurements using the M980xA's standard receivers up to 13.5 GHz . The 1-slot module also includes internal switches which are directly controlled by the M980xA's firmware, enabling synchronized fast measurements for both S-parameters and NF with the PXI system.

When combined with the direct access receivers and high-power coupler in the M9485A, the dynamic range can be increased which is suited for high-rejection filter measurements.

Figure 1. Keysight M9379A block diagram

Figure 2. Vector-calibrated NF measurement with M980xA and M9379A

Figure 3. Extending dynamic range of the M9485A PXIe VNA using the M9379A

Key specifications/features

- 50 MHz to 13.5 GHz
- Dual amplifiers (programmable gain and fixed gain)
- Fast path control with built-in solid-state switches
- +21 dBm saturated output power at 3 GHz (typ.)
- 25 dB forward gain at 3 GHz (typ.)
- 5 dB noise figure at 3 GHz (typ.)

Specifications

Definitions

Specification (spec.):

Warranted performance. All specifications apply at $25^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$ range ambient and module temperature between $28{ }^{\circ} \mathrm{C}$ to $42{ }^{\circ} \mathrm{C}$ as reported by the module, unless otherwise stated, and 45 minutes after the M9379A amplifiers and switches have been turned on ${ }^{1}$. Specifications include guard bands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Typical (typ.):
Expected performance of an average unit which does not include guardbands.

General characteristics:

A general, descriptive term that does not imply a level of performance.

Boundary conditions

If the same boundary conditions fall under more than one category in a table, apply the best value.

[^0]
Amp1 (Amplifier 1)

In-Out

Description	Specifications	Typical
Forward gain		
(Path: Amp, Attenuator: 0 dB)		
50 MHz to 1 GHz	+19 dB	+27 dB
1 to 3 GHz	+19 dB	+25dB
3 to 6.5 GHz	+16 dB	+22 dB
6.5 to 12 GHz	+7 dB	+18 dB
12 to 13.5 GHz	+5dB	$+14 \mathrm{~dB}$
Reverse gain		
(Path: Amp, Attenuator: 0 dB)		
50 MHz to 13.5 GHz		$-40 \mathrm{~dB}$
Return loss		
IN (Path: Amp or Thru, Attenuator: 0 dB)		
50 to 100 MHz	5 dB	8 dB
100 to 300 MHz	5 dB	11 dB
300 MHz to 6.5 GHz	10 dB	13 dB
6.5 to 9 GHz	6 dB	13 dB
9 to 13.5 GHz	5 dB	9 dB
OUT (Path: Amp, Attenuator: 0 dB)		
50 to 300 MHz	5 dB	8 dB
300 MHz to 6.5 GHz	8 dB	11 dB
6.5 to 9 GHz	8 dB	11 dB
9 to 13.5 GHz	5 dB	10 dB
Attenuator settable range		
	0 to $28 \mathrm{~dB}, 2 \mathrm{~dB}$ step	
Attenuator accuracy		
50 MHz to 9 GHz	$\pm(0.4+5 \%$ of setting) dB	$\pm(0.2+5 \%$ of setting) dB
9 to 13.5 GHz		$\pm(0.4+5 \%$ of setting) dB

Isolation (Thru-Out)		
50 M to 6.5 GHz		30 dB
6.5 G to 9 GHz		20 dB
9 G to 13.5 GHz		10 dB
Noise figure		
50 to 300 MHz		$\left[5+10 \log _{10}(0.3 / f)\right] \mathrm{dB}^{1}$
300 MHz to 6.5 GHz	8 dB	5 dB
6.5 to 9 GHz	9 dB	7 dB
9 to 13.5 GHz	11 dB	9 dB
Output 1 dB Compression (P1dB)		
50 to 100 MHz	17 dBm	19 dBm
100 MHz to 4 GHz	17.5 dBm	19.5 dBm
4 to 6.5 GHz	16 dBm	18.5 dBm
6.5 to 9 GHz	14 dBm	17 dBm
9 to 13.5 GHz	12 dBm	16 dBm
Saturated Output Power (Psat)		
50 to 100 MHz		21 dBm
100 MHz to 4 GHz		21.5 dBm
4 to 6.5 GHz		20.5 dBm
6.5 to 9 GHz		19 dBm
9 to 13.5 GHz		18 dBm
Output Intercept Point (OIP3) ${ }^{2}$		
50 M to 13.5 GHz		20 dBm
Harmonics (2nd and 3rd)		
50 M to $13.5 \mathrm{GHz},+10 \mathrm{dBm}$ output		$<-20 \mathrm{dBc}$
Gain Temperature Coefficient		
(Attenuator: 0 dB)		
50 MHz to 6.5 GHz		$-0.06 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$
6.5 to 13.5 GHz		$-0.08 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$

1. f in GHz .
2. Tested with 10 MHz tone separation.

Thru-Out

Description	Specifications	
Return loss		
OUT (Path: Thru), Thru (Path:Thru)	3 dB	8 dB
50 to 100 MHz	5 dB	11 dB
100 to 300 MHz	10 dB	13 dB
300 MHz to 6.5 GHz	8 dB	13 dB
6.5 to 9 GHz	5 dB	9 dB
9 to 13.5 GHz	5 dB	8 dB
THRU (Path: Amp)	10 dB	13 dB
50 to 300 MHz	8 dB	11 dB
300 MHz to 6.5 GHz	5 dB	8 dB
6.5 to 9 GHz	3 dB	6 dB
9 to 12 GHz		
12 to 13.5 GHz		3 dB
Insertion loss	5.5 dB	3 dB
(Path: Thru)	5 dB	3.5 dB
50 to 100 MHz	6 dB	4.5 dB
100 MHz to 3 GHz	7 dB	6.5 dB
3 to 6.5 GHz	9 dB	20 dB
6.5 to 9 GHz		
9 to 13.5 GHz		
Isolation (ln-0ut)		
(Attenuator: 0 dB)		
50 MHz to 6.5 GHz		
6.5 to 9 GHz		
9 to 13.5 GHz		

Amp2 (Amplifier 2)
In-Out

Description	Specifications	Typical
Forward gain		
50 MHz to 1 GHz	+19 dB	+27 dB
1 to 3 GHz	+19 dB	+25 dB
3 to 6.5 GHz	$+16 \mathrm{~dB}$	+22 dB
6.5 to 12 GHz	+9 dB	$+18 \mathrm{~dB}$
12 to 13.5 GHz	$+6 \mathrm{~dB}$	$+17 \mathrm{~dB}$
Reverse gain		
50 M to 13.5 GHz		$-40 \mathrm{~dB}$
Return loss		
Input		
50 to 100 MHz	5 dB	8 dB
100 to 300 MHz	5 dB	10 dB
300 MHz to 6.5 GHz	10 dB	13 dB
6.5 to 9 GHz	6 dB	10 dB
9 to 13.5 GHz	5 dB	10 dB
Output		
50 to 100 MHz	5 dB	8 dB
100 MHz to 300 MHz	5 dB	10 dB
300 to 6.5 GHz	10 dB	13 dB
6.5 to 9 GHz	8 dB	11 dB
9 to 13.5 GHz	5 dB	8 dB
Noise figure		
50 to 300 MHz		$\left[5+10 \log _{10}(0.3 / f)\right] \mathrm{dB}^{1}$
300 MHz to 6.5 GHz	8 dB	5 dB
6.5 to 9 GHz	9 dB	7 dB
9 to 13.5 GHz	11 dB	9 dB

[^1]| Output 1 dB Compression (P1dB) | | |
| :--- | :--- | :--- |
| 50 to 100 MHz | 17.5 dBm | 19 dBm |
| 100 MHz to 4 GHz | 18 dBm | 20 dBm |
| 4 to 6.5 GHz | 16.5 dBm | 19 dBm |
| 6.5 to 9 GHz | 15 dBm | 18 dBm |
| 9 to 13.5 GHz | 12 dBm | 16 dBm |
| Saturated Output Power (Psat) | | 21 dBm |
| 50 to 100 MHz | 22 dBm | |
| 100 MHz to 4 GHz | 21 dBm | |
| 4 to 6.5 GHz | 20 dBm | |
| 6.5 to 9 GHz | | 18 dBm |
| 9 to 13.5 GHz | | 20 dBm |
| Output Intercept Point (0lP3) ${ }^{2}$ | | $<-20 \mathrm{dBc}$ |
| 50 MHz to 13.5 GHz | | |
| Harmonics (2nd and 3rd) | | $-0.06 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ |
| 50 MHz to 13.5 GHz | $-0.08 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ | |
| Gain Temperature Coefficient | | |
| 50 MHz to 6.5 GHz | | |
| 6.5 to 13.5 GHz | | |

2. Tested with 10 MHz tone separation.

Switch

Description	Specifications	Typical
Insertion loss		
(Switch: Path A)		
50 to 100 MHz	5.5 dB	3 dB
100 MHz to 3 GHz	5 dB	3 dB
3 to 6.5 GHz	6 dB	3.5 dB
6.5 to 9 GHz	7 dB	4.5 dB
9 to 13.5 GHz	9 dB	6.5 dB
(Switch: Path B)		
50 to 100 MHz	5.5 dB	3 dB
100 MHz to 3 GHz	5 dB	3 dB
3 to 6.5 GHz	6 dB	4 dB
6.5 to 9 GHz	8 dB	5 dB
9 to 13.5 GHz	10 dB	7 dB
Return loss		
Selected Ports and COM		
50 to 100 MHz	3 dB	8 dB
100 to 300 MHz	5 dB	8 dB
300 MHz to 6.5 GHz	10 dB	13 dB
6.5 to 9 GHz	8 dB	11 dB
9 to 13.5 GHz	5 dB	6 dB
Unselected Ports		
50 to 100 MHz	5 dB	8 dB
100 to 300 MHz	5 dB	10 dB
300 MHz to 6.5 GHz	10 dB	13 dB
6.5 to 9 GHz	8 dB	10 dB
9 to 13.5 GHz	3 dB	10 dB
Isolation (Unselected Port to COM)		
50 MHz to 6.5 GHz		30 dB
6.5 to 9 GHz		20 dB
9 to 13.5 GHz		10 dB

Switch and Amp1 (COM to Amp1 OUT)

Figure 4. The connectors are connected with the furnished cables. Amp1 THRU - Switch A: M9378-61606, Amp 1 IN - Switch B: M9379-61603.

Description	Specifications	
Insertion loss		
(Amp1: Path THRU, Switch: Path A)		8 dB
50 to 100 MHz	6 dB	
100 MHz to 3 GHz	7 dB	
3 to 6.5 GHz	8 dB	
6.5 to 9 GHz		12 dB
9 to 12 GHz	13 dB	
12 to 13.5 GHz		
Forward gain		22 dB
(Amp1: Path Amp, Attenuator 0 dB, Switch: Path B)	18 dB	
50 MHz to 3 GHz		13 dB
3 to 6.5 GHz		11 dB
6.5 to 9 GHz		7 dB
9 to 12 GHz		
12 to 13.5 GHz		

Noise figure
(Amp1: Path Amp, Attenuator 0 dB, Switch: Path B)
(to 300 MHz
300 MHz to 4 GHz
4 to 6.5 GHz
6.5 to 9 GHz
9 to 13.5 GHz

1. f in GHz

General Characteristics

Front panel connector

Description	Connector type	Typical
Amp 1 IN	SMA female	
Amp 1 OUT, THRU	3.5 mm female	
Switch A	3.5 mm female	
Switch B	SMA female	
Amp 2 IN, OUT	3.5 mm female	
Sync	SMB male	
Damage Level	3.5 mm and SMA Port	+30 dBm or $\pm 35 \mathrm{VDC}$
	Hot Switching	+20 dBm

Isolation ${ }^{1}$

Description	Specification	
Between Amp 1 and Switch		120 dB
50 MHz to 8.5 GHz		110 dB
8.5 to 13.5 GHz		
Between (Amp 1+Switch) and Amp2		140 dB
50 MHz to 8.5 GHz	130 dB	
8.5 to 13.5 GHz		

1. The unused ports are terminated with 50Ω.

Miscellaneous

Description	\quad General characteristics
Dimensions	$210 \mathrm{~mm} \times 22 \mathrm{~mm} \times 130 \mathrm{~mm}$
Weight (net)	550 g
Power drawn from chassis	14.7 W max.
	$+3.3 \mathrm{~V}: 0.71 \mathrm{~A}$
	$+5 \mathrm{~V}: 0 \mathrm{~A}$
	$+12 \mathrm{~V}: 1.025 \mathrm{~A}$
	$-12 \mathrm{~V}: 0 \mathrm{~A}$
Warm up time	45 minutes ${ }^{1}$

1. Not only chassis power-on but also turning on the amplifiers by software (PXI VNA firmware, soft front panel or IVIdriver) are required. Refer to the help for more information.

EMC, safety, environment and compliance

Description	Specifications
EMC	
ISM 1-A	European Council Directive 2014/30/EC IEC 61326-1:2012 EN 61326-1:2013 CISPR 11:2009 +A1:2010 EN 55011: 2009 +A1:2010 Group 1, Class A IEC 61000-4-2:2008 EN 61000-4-2:2009 4 kV CD / 8 kV AD IEC 61000-4-3:2006 +A1:2007 +A2:2010 EN 61000-4-3:2006 +A1:2008 +A2:2010 $3 \mathrm{~V} / \mathrm{m}, 80-1000 \mathrm{MHz}, 1.4-2.0 \mathrm{GHz} / 1 \mathrm{~V} / \mathrm{m}, 2.0-2.7 \mathrm{GHz}, 80 \% \mathrm{AM}$ IEC 61000-4-4:2004 +A1:2010 EN 61000-4-4:2004 +A1:2010 2 kV power lines / 0.5 kV signal lines IEC 61000-4-5:2005 EN 61000-4-5:2006 1 kV line-line / 2 kV line-ground IEC 61000-4-6:2008 EN 61000-4-6:2009 $3 \mathrm{~V}, 0.15-80 \mathrm{MHz}, 80 \% \mathrm{AM}$ IEC 61000-4-8:2009

	EN 61000-4-8:2010
$30 \mathrm{~A} / \mathrm{m}, 50 / 60 \mathrm{~Hz}$	
IEC 61000-4-11:2004	
EN 61000-4-11:2004	
$0.5-300$ cycle, $0 \% / 70 \%$	

Analyzer environmental specifications

Operating environment	General characteristics
Temperature	0 to $55^{\circ} \mathrm{C}$ ambient
	0 to $55^{\circ} \mathrm{C}$ module temperature
Humidity	20% to 80% at wet bulb temperature $<+29^{\circ} \mathrm{C}$ (non-condensation)
Altitude	0 to $2,000 \mathrm{~m}(0$ to 6561 feet)
Vibration	0.21 G maximum, 5 Hz to 500 Hz
Non-operating environment	General characteristics
Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity	20% to 90% at wet bulb temperature $<+40^{\circ} \mathrm{C}$ (non-condensation)
Altitude	0 to $4,572 \mathrm{~m}(0$ to 15,000 feet)
Vibration	0.5 G maximum, 5 Hz to 500 Hz

Dimensions

Learn more at: www.keysight.com

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at:
www.keysight.com/find/contactus

[^0]: 1. It is needed before using to turn on the amplifiers and switches by PXI VNA firmware, Soft Front Panel or IVIdriver. Refer to the help for more information.
[^1]: 1. f in GHz .
