Keysight PXI Matrix and Multiplexer Switch Modules

Notices

© Keysight Technologies, Inc. 2014-2018
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

M9101-90005

Edition

Third Edition, December 2018
Published in U.S.A.
900 S. Taft Avenue,
Loveland, CO. 80537

Trademarks

PICMIG ${ }^{\circledR}$, COMPACT PCI ${ }^{\circledR}$, and Advanced TCA ${ }^{\circledR}$ are registered trademarks of the PCI Industrial Computer Manufacturers Group
PCI-SIG ${ }^{\circledR}$, PCI Express ${ }^{\circledR}$, and $\mathrm{PCle}^{\circledR}$ are registered trademarks of PCI-SIG

Sales and Technical Support

To contact Keysight for sales and technical support, refer to the support links on the following Keysight websites:
www.keysight.com/find/M9101A (prod-uct-specific information and support, software and documentation updates)
www.keysight.com/find/assist (worldwide contact information for repair and service)

Declaration of Conformity

Declarations of Conformity for this product and for other Keysight products may be downloaded from the Web. Go to http://www.keysight.com/go/conformity and click on "Declarations of Conformity." You can then search by product number to find the latest Declaration of Conformity.

rechnology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR OF ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT SHALL CONTROL.
Keysight Technologies does not warrant third-party system-level (combination of chassis, controllers, modules, etc.) performance, safety, or regulatory compliance unless specifically stated.

DFARS/Restricted Rights Notices

If software is for use in the performance of a U.S. Government prime contract or subcontract, Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Keysight Technologies' standard commercial license terms, and nonDOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.2277015 (b)(2) (November 1995), as applicable in any technical data.

Safety Information

The following general safety precautions must be observed during all phases of operation of this instrument. Failure to comply with these precautions or with specific warnings or operating instructions in the product manuals violates safety standards of design, manufacture, and intended use of the instrument. Keysight Technologies assumes no liability for the customer's failure to comply with these requirements.

General

Do not use this product in any manner not specified by the manufacturer. The protective features of this product must not be impaired if it is used in a manner specified in the operation instructions.

Before Applying Power

Verify that all safety precautions are taken. Make all connections to the unit before applying power. Note the external markings described under "Safety Symbols".

Ground the Instrument
Keysight chassis' are provided with a grounding-type power plug. The instrument chassis and cover must be connected to an electrical ground to minimize shock hazard. The ground pin must be firmly connected to an electrical ground (safety ground) terminal at the power outlet. Any interruption of the protective (grounding) conductor or disconnection of the protective earth terminal will cause a potential shock hazard that could result in personal injury.

Do Not Operate in an Explosive Atmosphere
Do not operate the module/chassis in the presence of flammable gases or fumes.

Do Not Operate Near Flammable Liquids

Do not operate the module/chassis in the presence of flammable liquids or near containers of such liquids.

Cleaning

Clean the outside of the Keysight module/chassis with a soft, lint-free, slightly dampened cloth. Do not use detergent or chemical solvents.

Do Not Remove Instrument Cover

Only qualified, service-trained personnel who are aware of the hazards involved should remove instrument covers. Always disconnect the power cable and any external circuits before removing the instrument cover.

Keep away from live circuits
Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers and shields are for use by servicetrained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.

DO NOT operate damaged equipment

Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by servicetrained personnel. If necessary, return the product to an Keysight Technologies Sales and Service Office for service and repair to ensure the safety features are maintained.

DO NOT block the primary disconnect

The primary disconnect device is the appliance connector/power cord when a chassis used by itself, but when installed into a rack or system the disconnect may be impaired and must be considered part of the installation.

Do Not Modify the Instrument

Do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Keysight Sales and Service Office to ensure that safety features are maintained.

In Case of Damage

Instruments that appear damaged or defective should be made inoperative and secured against unintended operation until they can be repaired by qualified service personnel

CAUTION

Do NOT block vents and fan exhaust: To ensure adequate cooling and ventilation, leave a gap of at least 50 mm (2") around vent holes on both sides of the chassis.

Do NOT operate with empty slots: To ensure proper cooling and avoid damaging equipment, fill each empty slot with an AXIe filler panel module.

Do NOT stack free-standing chassis: Stacked chassis should be rackmounted.

All modules are grounded through the chassis: During installation, tighten each module's retaining screws to secure the module to the chassis and to make the ground connection.

WARNING

Operator is responsible to maintain safe operating conditions. To ensure safe operating conditions, modules should not be operated beyond the full temperature range specified in the Environmental and physical specification. Exceeding safe operating conditions can result in shorter lifespan, improper module performance and user safety issues. When the modules are in use and operation within the specified full temperature range is not maintained, module surface temperatures may exceed safe handling conditions which can cause discomfort or burns if touched. In the event of a module exceeding the full temperature range, always allow the module to cool before touching or removing modules from the chassis.

WARNING

REMOTE OPERATION
When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.

To prevent electrical shock, use only wires that are rated for the maximum voltage applied to any channel.

WARNING

When any channel is connected to a hazardous voltage source, all channels in the module should be treated as hazardous.

WARNING

When any channel is connected to a hazardous voltage source, all channel wiring in the module should be rated for the maximum voltage applied.

WARNING

When any channel is connected to a hazardous voltage source, thermocouples attached to any other channel on the module shall have insulation rated for the maximum voltage, or have additional insulation added rated for the maximum voltage and will be isolated from conductive parts using a thermal compound or tape rated for the maximum voltage applied.

WARNING

Do not mount, move or remove any thermocouples when the device under test is connected to a signal source.

WARNING

When any channel is connected to a hazardous voltage source, the instrument and the device under test should be supervised, following local EHS practices to restrict access.

WARNING

To avoid the possibility of multiple signal sources becoming connected together, we recommend when multiplexing two or more sources they should be connected on separate modules or on separate banks of the same module.

WARNING

BEFORE POWER ON AND OFF

Before powering on the instrument, make sure all signal sources connected to modules are turned off. Turn on signal sources after the instrument is powered on. Turn off signal sources before the instrument is powered off.

Safety Symbols

CAUTION

A CAUTION denotes a hazard. It calls attention to an operating procedure or practice, that, if not correctly performed or adhered to could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING denotes a hazard. It calls attention to an operating procedure or practice, that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Products display the following symbols:

Warning, risk of electric shock

Refer to manual for additional safety information.

Earth Ground.

Chassis Ground.

Alternating Current (AC).
Standby Power. Unit is not
completely disconnected
from AC mains when switch is in standby.
Antistatic precautions should be taken.

For localized Safety Warnings, Refer to Keysight Safety document (p / n 9320-6792).

The instrument has been tested, investigated and found to comply with the requirements of the Standard(s) for Electrical Measuring \& Test Equipment.

$$
<\text { ICES/NMB-001 }
$$

Notice for European Community: This product complies with the relevant European legal Directives: EMC Directive (2004/108/EC) and Low Voltage Directive (2006/95/EC).

ISM

This is the symbol for an Industrial, Scientific, and Medical Group 1 Class A product.

The Regulatory Compliance Mark (RCM) mark is a registered trademark. This signifies compliance with the Australia EMC Framework regulations under the terms of the Radio Communication Act of 1992.

ICES/NMB-001

ICES/NMB-001 indicates that this ISM device complies with the Canadian ICES-001.

This symbol represents the time period during which no hazardous or toxic substance elements are expected to leak or deteriorate during normal use. Forty years is the expected useful life of this product.

Waste Electrical and Electronic Equipment (WEEE) Directive 2002/96/EC

This product complies with the WEEE Directive (2002/96/EC) marking requirement. The affixed product label (see below) indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category: With reference to the equipment types in the WEEE directive Annex 1, this product is classified as a "Monitoring and Control instrumentation" product.

Do not dispose in domestic household waste.

To return unwanted products, contact your local Keysight office for more information.

Contents

1 General Information
Related documentation 8
Module characteristics 8
Safety Considerations 9
Electrostatic discharge precautions 9
Inspect for Damage 10
Returning a Module for Service 10
Operational Verification of the Modules 11
Run Keysight IO Libraries Connection Expert 11
Identifying channel numbers 13
Functional Verification Test Procedures 15
Recommended test equipment 15
Test conditions 15
Relay path resistance measurements 16
Path resistances 17
Functional Verification Test Record 17
Relay Life 17
End-of-Life Detection 18
Relay replacement strategy 18
Post-repair safety checks 19
Replacement Relays 20
Module Accessories 20
2 M9101A Multiplexer, 64 channel, 2-wire Reed Relays
Introduction 22
Default switch path 22
Replacement Relays 22
Troubleshooting and Functional Verification Testing 24
M9101A Functional Verification Test Record - Closed Channel Resistance 25
M9101A Schematic 26
M9101A PC Board Layout 27
3 M9102A Multiplexer, 128 channel, 1-wire Reed Relays
Introduction 30
Default switch path 30
Replacement Relays 30
Troubleshooting and Functional Verification Testing 32
Channel to Relay Numbers 33
M9102A Functional Verification Test Record - Closed Channel Resistance34
M9102A Schematic 36
M9102A PC Board Layout. 37
4 M9103A Multiplexer, 99 channel, 2-wire Armature Relays
Introduction 40
Default switch path 40
Replacement Relays 40
Troubleshooting and Functional Verification Testing 42
M9103A Functional Verification Test Record - Closed Channel Resistance 43
M9103A Schematic 45
M9103A PC Board Layout. 46
5 M9120A Matrix Switch, 4×32, 2-wire Armature Relays
Introduction 48
Default switch path 48
Replacement relays 48
Troubleshooting and Functional Verification Testing 50
M9120A Functional Verification Test Record - Closed Channel Resistance 51
M9120A Schematic 54
M9120A PC Board Layout. 56
6 M9121A Matrix Switch, 4x64, 2-wire Reed Relays
Introduction 58
Default switch path 58
Replacement relays 58
Troubleshooting and Functional Verification Testing 60
M9121A Functional Verification Test Record -- Closed Channel Resistance61
M9121A Schematic 64
M9121A PC Board Layout 68
7 M9122A Matrix Switch, 8x32, 1-wire Armature Relays
Introduction 70
Default switch path 70
Replacement Relays 70
Troubleshooting and Functional Verification Testing 71
M9122A Functional Verification Test Record - Closed Channel Resistance 73
M9122A Schematic 77
M9122A PC Board Layout 81

1 Index

PXI Matrix and Multiplexer Switch Modules Maintenance Guide
 1 General Information

The Keysight PXI switch modules deliver high-performance switching with fast, easy installation and configuration. The following modules are covered in this Maintenance Guide:

Multiplexer modules

- M9101A Multiplexer: 64-channel, 2-Wire, Reed Relays
- M9102A Multiplexer: 128-channel, 1-Wire, Reed Relays
- M9103A Multiplexer: 99-channel, 2-Wire, Armature Relays

Matrix modules

- M9120A Matrix Switch: 4×32, 2-Wire, Armature Relays
- M9121A Matrix Switch: 4x64, 2-Wire, Reed Relays
- M9122A Matrix Switch: 8x32, 1-Wire, Armature Relays

Keysight also supplies software drivers that allow you to support the modules in all popular PXI chassis' and programming environments. Soft Front Panel software allows you to exercise the channels for test purposes.

NOTE

Keysight AgMSwitch driver version 1.1.x or later or the Keysight LabVIEW G driver version 1.1.x or later is required for programmatic control of these switch modules.

Related documentation

This Maintenance Guide, and the documentation listed below, are on the Switch Module Software and Product Information CD.

- Help file for the PXI Switch Modules Soft Front Panel
- Help file for the PXI Switch Modules IVI-C/IVI-COM device drivers
- Help file for the PXI Switch Modules LabVIEW G device drivers

Module characteristics

For detailed module characteristics, refer to the module data sheets on the Switch Module Software and Product Information CD or check the Keysight web site at: www.keysight.com/find/pxiswitch. Note that the characteristics are typical and not guaranteed specifications.

Safety Considerations

WARNING

SHOCK HAZARD. Only service-trained personnel who are aware of the hazards involved should attempt to remove these modules from the chassis and repair them. Remove all user wiring and connections from the plug- in modules before troubleshooting or verification.

Electrostatic discharge precautions

CAUTION

Keysight's PXI Switch Modules are shipped in materials that prevent static electricity damage. The modules should only be removed from the packaging in an anti-static area ensuring that correct anti-static precautions are taken. Store all modules in anti-static envelopes when not in use.

Electrostatic discharge (ESD) can damage or destroy electronic components. All work on electronic assemblies should be performed at a static-safe work station. The following figure shows an example of a static-safe work station using two types of ESD protection. Purchase acceptable ESD accessories from your local supplier.

- Conductive table-mat and wrist-strap combination.
- Conductive floor-mat and heel-strap combination.

Both types, when used together, provide a significant level of ESD protection. Of the two, only the table-mat and wrist-strap combination provides adequate ESD protection when used alone. To ensure user safety, the static-safe accessories must provide at least $1 \mathrm{M} \Omega$ of isolation from ground.

Inspect for Damage

Carefully inspect the modules for any damage. Report any shipping damage to the shipping agent immediately, as such damage is not covered by the warranty.

CAUTION

To avoid damage when handling a module; do not touch exposed connector pins.

Returning a Module for Service

Should it become necessary to return a Keysight PXI switch module for repair or service, follow the steps below:
1 Review the warranty information shipped with your product.
2 Contact Keysight to obtain a return authorization and return address. If you need assistance finding Keysight contact information go to www.keysight.com/find/assist (worldwide contact information for repair and service) or refer to the Technical Support information on the product web page at: www.keysight.com/find/pxiswitch.
3 Write the following information on a tag and attach it to the module.

- Name and address of owner. A Post Office box is not acceptable as a return address.
- Product model number (for example, M9101A)
- Product serial number (for example, MYXXXXXXXX). The serial number label is located on the side of the module.
- A description of failure or service required.

4 Carefully pack the module in its original ESD bag and carton. If the original carton is not available, use bubble wrap or packing peanuts, place the instrument in a sealed container and mark the container "FRAGILE".

5 On the shipping label, write ATTENTION REPAIR DEPARTMENT and the service order number (if known).

NOTE

If any correspondence is required, refer to the product by serial number and model number.

Operational Verification of the Modules

There are no specific programmable operational verification or self test procedures for these modules. However, you can use the Soft Front Panel software to open/close individual channels. This will verify that the module is installed correctly and that the host controller can communicate with the module. If the controller can communicate with one module but not another, the PXIe interface circuitry on the module may be bad.

To control the modules -- that is open and close channel relays -- you must have Keysight IO Libraries Suite installed (version 16.0 or later). IO Libraries Suite is required for the IVI instrument drivers. Use the Keysight Soft Front Panel interface to control the modules. Module drivers and the Soft Front Panel software were provided on the Product and Information CD supplied with the modules. Keysight IO Libraries version 16.0 (or later) must be installed prior to installing and running any other software and prior to powering the chassis. The latest version can be downloaded from: www.keysight.com/find/iosuite.

Run Keysight IO Libraries Connection Expert

- If Keysight Connection Expert is already running on the host controller, click the Refresh All button to identify any hardware you have just installed or re-connected.
- If Connection Expert is not already running, run it now to verify your I/O configuration. In the Windows Notification Area, click the IO icon then click Keysight Connection Expert.

Locate your interfaces and instruments in the Keysight Connection Expert Explorer Pane. The following graphic shows the Connection Expert screen.

Select a module in the center pane (Instrument I/O on this PC). The right-hand Pane shows the instrument properties. Select the Installed Drivers tab then click the Start SFP button.

Refer to the SFP help file on the Switch Module Software and Product Information CD for specific detailed information on the SFP. In the Soft Front Panel interface, when you mouse over a specific channel or matrix crosspoint the cursor changes to the hand cursor, and a popup tool-tip shows the channel number as shown in the following graphic. The following graphic shows an example of the SFP for the M9101A Multiplexer module; it shows channel 36 and the isolation relay closed.

NOTE

You can use the Soft Front Panel software to close/open relays (channels) on any of the Keysight PXI switch modules for functional verification testing.

Beginning with SFP Version 1.1.x, if you have another application, either your own program or another instance of the SFP interface, that has initialized the switch module, then the SFP enters it's "monitor" mode. In this mode, you cannot change relay state and the menu buttons are grayed-out. However, as the other application controls the channels, the SFP interface monitors and displays the state of the individual relays. Refer to the SFP help file for additional information.

Identifying channel numbers

In the Soft Front Panel interface, when you mouse over a specific channel or matrix crosspoint the cursor changes to the hand cursor, and a popup tool-tip shows the Instrument Specific Syntax for the channel number as shown in the following graphics. The Instrument Specific Syntax for channel numbers are used by the IVI and LabVIEW driver open/close commands.

The following graphics show the Soft Front Panel interface and illustrate the channel numbering scheme for multiplexer and matrix modules.

For the multiplexer modules, the Instrument Specific Syntax for channel numbers are in the form: bnchn where bn is the bank number (generally ' 1 ') and chn is the channel number. For example, RouteCloseChannel("b1ch36") closes the relay that connects channel 36 to the common. Previously closed channels are automatically opened. See the following graphic:

For the matrix modules, the Instrument Specific Syntax for channel numbers are in the form: mnrncn where m indicates a matrix module, $r n$ is the row and cn is the column. For example, RouteCloseChannel("m1r2c12") closes the relays to connect row 2 to column 12 of matrix 1 . See the following graphic of the M9120A with crosspoint R2C12 closed:

Functional Verification Test Procedures

The Functional Verification tests are used to test the module's electrical performance using the typical characteristics supplied in the module's data sheet. For the low frequency multiplexer and matrix modules, the Functional Verification tests consist of measuring each channel's contact path resistance as described the individual chapters. Note that these test only verify that the modules are working, they do not measure any performance specifications.

Recommended test equipment

The following test equipment is required for testing and servicing the PXI switch modules. Essential requirements for each piece of test equipment are described in the Requirements column. Other equipment may be substituted as long as it meets the requirements listed in the Requirements column.

Instrument	Requirements	Recommended Model	Used for PXI Switch Modules
Digital Multimeter 4-wire Ohms Keysight 34401A, 34410A, 34411A, 3458A, etc. All modules			

In addition, a PXI Chassis and controller are also necessary to control the modules (close/open relays, etc.). A recommended chassis is the M9018A 18-slot PXIe chassis and the M9036A Embedded Controller.

Test conditions

The following setup and environmental conditions are required when testing the modules to ensure the quality of measurements

- Secure all connections to modules.
- Maintain an ambient temperature of $23^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$.
- Keep relative humidity (RH) below 80%.
- Allow adequate warm up time for the test equipment.
- Plug the PXI chassis all test equipment, and computer (if used) into the same ac power strip to avoid ground loops in the test environment.

You should complete the Functional Verification tests at least once per year. For heavy use or severe operating environments, perform the tests more often.
The person performing the tests must understand how to operate the chassis, the modules using the Keysight Soft Front Panel software, and the specified test equipment. The test procedures do not specify equipment settings for the test equipment except in general terms. It is assumed that a qualified, service-trained technician will select and connect the cables, adapters, and probes required for the tests.

Relay path resistance measurements

Relay module path resistance (relay contact) measurements are appropriate for all relay modules. Measurements are made from the module's front panel terminals, and do not include terminal block or connector resistance. Use 4-wire Ohms measurement techniques and measure directly at the module's front panel terminals where possible. Use shielded twisted pair PTFE insulated cables to reduce settling and noise errors. Keep the input cables as short as possible. Refer to Figure 1.
Note that the characteristics provided on the data sheet are typical and not guaranteed specifications.

WARNING

Do not attempt to measure relay contact resistance directly on the solder terminals on a switch module installed in the PXIe chassis.

When all relays are "open," a resistance measured on any channel indicates a welded contacts condition and the relay or module must be replaced. There is no specific path resistance or test for this failure.

Figure 1 4-Wire Ohms Resistance Measurements

Path resistances

The following table lists the typical path resistances and the approaching Maximum Path Resistance resistance measurements for the low frequency PXI modules.

Relay Module	Initial Path Resistance	Path Resistance *
M9101A	$800 \mathrm{~m} \Omega$	$<1.50 \Omega$
M9102A	$400 \mathrm{~m} \Omega$	$<1.50 \Omega$
M9103A	$470 \mathrm{~m} \Omega$	$<1.00 \Omega$
M9120A	$500 \mathrm{~m} \Omega$	$<1.40 \Omega$
M9121A	$900 \mathrm{~m} \Omega$	$<2.70 \Omega$
M9122A	$250 \mathrm{~m} \Omega$	$<1.40 \Omega$

* If the path resistance exceeds this value, one or more relays in the signal path has a significantly higher contact resistance and may need replacing.

The DC path resistance test is specified for the PXI matrix and multiplexer modules. Measuring dc path resistance provides a simple functional verification of the relays.

Functional Verification Test Record

Each module chapter in this manual has a Functional Test Record. This is a form that you can copy and use to record Functional Verification Test Results for that module. Functional Verification does not verify that the module is within specifications.

Relay Life

Electromechanical relays are subject to normal wear-out. Relay life depends on several factors. The effects of loading and switching frequency are briefly discussed below.

Relay load. In general, higher power switching reduces relay life. In addition, capacitive/inductive loads and high inrush currents (e.g., when turning on a lamp or motor) reduce relay life. Exceeding the specified maximum inputs can cause catastrophic failure.

Switching frequency. Relay contacts heat up when switched. As the switching frequency increases, the contacts have less time to dissipate heat. The resulting increase in contact temperature reduces relay life.

NOTE

Switch modules are considered "wear out" items and it is normal for relay performance to degrade over time. Life expectancy and performance depend on the specific application and use model.

End-of-Life Detection

A preventive maintenance routine can prevent problems caused by unexpected relay failure. The end of the life of a relay can be determined using one or more of the three methods described below. The best method (or combination of methods), as well as the failure criteria, depends on the application in which the relay is used.

Contact resistance. As the relay begins to wear out, its contact resistance will increase. When the resistance exceeds a pre-determined value, the relay should be replaced. Note that the characteristics provided on the data sheet are typical and not guaranteed. Refer to "Path resistances" on page 17

Stability of contact resistance. The stability of the contact resistance decreases with age. Using this method, the contact resistance is measured several (5-10) times, and the variance of the measurements is determined. An increase in the variance indicates deteriorating performance.

Number of relay operations. Alternatively, relays can be replaced after a predetermined number of contact closures. However, this method requires knowledge of the applied load and life specifications for the applied load. The Keysight PXI switch modules do not provide a relay closure counter.

Keysight Application Note 1399, Maximizing the Life Span of Your Relays, offers suggestions for selecting the right relays for your application, predicting their longevity and preventing early failures.

Relay replacement strategy

For the matrix and multiplexer relay modules, the replacement strategy depends on the application. If some channels are used more often or at higher loads than the others, the individual relay(s) can be replaced as needed. If all of the channels switch similar loads and switching frequencies, the entire module should be replaced when the relay Maximum Path Resistance approaches. The sensitivity of the application should be weighed against the cost of replacing relays with some useful life remaining.

NOTE

Relays that wear out normally or fail due to misuse should not be considered defective and are not covered by the product's warranty.

Post-repair safety checks

After making repairs to the modules, inspect them for any signs of abnormal internally generated heat such as discolored printed circuit boards or components, damaged insulation, or evidence of arcing. Determine and correct the cause of the condition. Then perform the verification test as described for each module to verify that the modules is functional.

Replacement Relays

Keysight PXI Switch Module	Keysight Part Number for Replacement Relay	
M9101A Mux. 64-ch, 2-wire Reed Relays	$0490-2921$	Relay-dry reed 2A 5vdc-coil 1A 100VAC 375 Ω through-hole
M9102A Mux. 128-ch, 1-wire Reed Relays	$0490-2921$	Relay-dry reed 2A 5VDC-coil 1A 100VAC 375 Ω through-hole
M9103A Mux. 99-ch, 2-wire Armature Relays	$0490-2919$	Relay 2C 5VDC-coil 220VDC 500 Ω through-hole
M9120A Matrix 4x32 2-wire Armature Relays	$0490-2919$	Relay 2C 5VDC-coil 220VDC 500 Ω through-hole
M9121A Matrix 4x64, 2-wire Reed Relays	$0490-2965$	Relay 5VDC-coil 200VDC 250 Ω through-hole
M9122A Matrix 8x32 1-wire Armature Relays	$0490-2919$	Relay 2C 5VDC-coil 220VDC 500 Ω through-hole

Module Accessories

Module	Accessory Part Number	Description
M9101A M9102A M9103A	Y1182A	PXI connector block: 200-pin, shielded, male
	M9120A	Y1189A
	Y1190A	PXI connector cable: 200-pin, male-to-female, 1 meter
	Y1181A	PXI connector cable: 200-pin, male-to-female, 2 meter block: 78-pin, shielded, female, DSub
M91187A	PXI connector cable: 78-pin, male-to-female, 1 meter	
	Y1188A	PXI connector cable: 78-pin, male-to-female, 2 meter
	Y1182A	PXI connector block: 200-pin, shielded, male
	Y1189A	PXI connector cable: 200-pin, male-to-female, 1 meter
	Y1180A	PXI connector cable: 200-pin, male-to-female, 2 meter
M9122A	YXI connector block: 50-pin, shielded, female, DSub	
	Y1186A	PXI connector cable: 50-pin, male-to-female, 1 meter

2 M9101A Multiplexer, 64 channel, 2-wire Reed Relays

Introduction

Keysight's M9101A high density multiplexer module operates as a conventional multiplexer module with break-before-make action. Relays on this module are Ruthenium sputtered reed relays. Front panel connections are through a high density 200 pin Low Force Helix (LFH) connector. See Figure 2 on page 23.

Isolation relays (RL65 and RL66) connect the 64 individual channel relays to the module Hi and Low COMmon. This allows for minimum capacitive loading and leakage currents in large multiplexer systems. See the schematic, Figure 4 on page 26.

NOTE

There is no user-discernible difference between the M9101A module and the M9102A module. The difference is in the FPGA programming. In the M9101A module, relay RL67 is loaded but never used (see schematic and board layout, Figure 4 and Figure 5 respectively.

Default switch path

At power on or reset, all relays on the module are open.

Replacement Relays

One spare channel relay (RL68) is loaded on the M9101A PC board. Refer to Figure 5. To use this relay, you must desolder it from the PC board and solder it in place of a defective channel relay. Additional channel or isolation relays may be ordered from Keysight using part number 0490-2921.

CAUTION

To maintain typical switching characteristics (refer to the module data sheet) and user safety, use only Keysight-specified relays. Do not substitute relays unless directed by Keysight support.

Figure 2 M9101A Connector and Pinout
(viewed from the front panel, "--" indicates pins not used)

Troubleshooting and Functional Verification Testing

To troubleshoot and verify the relays on the module, perform a closed channel resistance test on each channel. This procedure does not provide performance or specification verification.

CAUTION

Remove all user wiring and connections from the plug-in modules before troubleshooting or verification.

When all relays are "open," a resistance measured on any channel path indicates a welded contacts condition and the relay or module must be replaced. There is no specific path resistance or test for this failure.

The path resistance characteristic assumes that the individual channel connections on the module front panel are shorted and the DMM is connected to the COMmon terminals. See Figure 3.

Figure 3 M9101A Contact Resistance Test

Note that this path includes four relay contacts -- the two channel relay contacts (Hi and Lo) and one contact on relays RL65 and RL66. The typical initial path resistance is approximately $800 \mathrm{~m} \Omega$.

Alternately, you can measure the contact resistance COM Hi to the channel Hi terminals and then from the COM Lo to the channel Lo terminals. In this case, the contact resistance should be approximately one-half of the total.

M9101A Functional Verification Test Record - Closed Channel Resistance

Channel No.	Path Resistance*	Measured Value	Channel No.	Path Resistance ${ }^{*}$	Measured Value
1	< 1.50Ω		33	< 1.50Ω	
2	< 1.50Ω		34	< 1.50Ω	
3	< 1.50Ω		35	< 1.50Ω	
4	< 1.50Ω		36	< 1.50Ω	
5	< 1.50Ω		37	< 1.50Ω	
6	< 1.50Ω		38	< 1.50Ω	
7	< 1.50Ω		39	< 1.50Ω	
8	< 1.50Ω		40	< 1.50Ω	
9	< 1.50Ω		41	< 1.50Ω	
10	< 1.50Ω		42	< 1.50Ω	
11	< 1.50Ω		43	< 1.50Ω	
12	< 1.50Ω		44	< 1.50Ω	
13	< 1.50Ω		45	< 1.50Ω	
14	< 1.50Ω		46	< 1.50Ω	
15	< 1.50Ω		47	< 1.50Ω	
16	< 1.50Ω		48	< 1.50Ω	
17	< 1.50Ω		49	< 1.50Ω	
18	< 1.50Ω		50	< 1.50Ω	
19	< 1.50Ω		51	< 1.50Ω	
20	< 1.50Ω		52	< 1.50Ω	
21	< 1.50Ω		53	< 1.50Ω	
22	< 1.50Ω		54	< 1.50Ω	
23	< 1.50Ω		55	< 1.50Ω	
24	< 1.50Ω		56	< 1.50Ω	
25	< 1.50Ω		57	< 1.50Ω	
26	< 1.50Ω		58	< 1.50Ω	
27	< 1.50Ω		59	< 1.50Ω	
28	< 1.50Ω		60	< 1.50Ω	
29	< 1.50Ω		61	< 1.50Ω	
30	< 1.50Ω		62	< 1.50Ω	
31	< 1.50Ω		63	< 1.50Ω	
32	< 1.50Ω		64	< 1.50Ω	

[^0]
M9101A Schematic

Figure 4 M9101A Schematic
Notes:

- Numbers in parenthesis are front panel connector pin numbers.
- RL67 is loaded on the PC board but is not used on the M9101A module. See note on page 22.
- Channel relay numbers (RL1 - RL64) correspond to the channel numbers.

M9101A PC Board Layout

Figure 5 M9101A PC Board Relay Layout

Figure 6 shows the back side (solder side of the M9101A) and also shows the relay contact connections (the center two terminals are for the relay coil drive). Note that relays RL65, RL66, and RL67 are reversed.

Figure 6 Back side (solder side) of M9101A showing relay contacts

PXI Matrix and Multiplexer Modules

Maintenance Guide

3 M9102A Multiplexer, 128
 channel, 1-wire Reed Relays

Introduction

Keysight's M9102A high density multiplexer module operates as a conventional multiplexer module with break-before-make action. Relays on this module are Ruthenium sputtered reed relays. Front panel connections are through a high density 200 pin Low Force Helix (LFH) connector. See Figure 7 on page 31.

Isolation relays (RL65 and RL67) connect the 64 channel relays to the module's COMmon. This allows for minimum capacitive loading and leakage currents in large multiplexer systems. Refer to the schematic Figure 9 on page 36 .

NOTE

There is no user-discernable difference between the M9101A module and the M9102A module. The difference is in the FPGA programming. In the M9102A module, relay RL66 is loaded but never used (see schematic and board layout, Figure 9 and Figure 10 respectively.

Default switch path

At power on or reset, all relays on the module are open.

Replacement Relays

One spare channel relay (RL68) is loaded on the M9102A PC board. Refer to Figure 10. To use this relay, you must desolder it from the PC board and solder it in place of a defective channel relay. Additional channel or isolation relays may be ordered from Keysight using part number 0490-2921.

CAUTION

To maintain typical switching characteristics (refer to the module data sheet) and user safety, use only Keysight-specified relays. Do not substitute relays unless directed by Keysight support.

Figure 7 M9102A Connector and Pinout
(viewed from the front panel, "--" indicates pins not used)

Troubleshooting and Functional Verification Testing

To troubleshoot and verify the relays on the module, perform a closed channel resistance test on each channel. This procedure does not provide performance or specification verification.

CAUTION

 modules before troubleshooting or verification.When all relays are "open," a resistance measured on any channel path indicates a welded contacts condition and the relay or module must be replaced. There is no specific path resistance or test for this failure.

The internal path resistance characteristic assumes that the individual channel connection on the module front panel to the COMmon terminal. See Figure 8.

Figure 8 M9102A Contact Resistance Test

Note that this includes two relay contacts -- one channel relay contact and one contact on relays RL65 or RL67. Also, each relay represents two different channels; relay RL14, for example, is used for channels 27 and 28. The typical initial path resistance is approximately $400 \mathrm{~m} \Omega$.

Channel to Relay Numbers

Channel Numbers	Relay						
1,2	RL1	33,34	RL17	65,66	RL33	97,98	RL49
3,4	RL2	35,36	RL18	67, 68	RL34	99, 100	RL50
5,6	RL3	37,38	RL19	69,70	RL35	101, 102	RL51
7,8	RL4	39,40	RL20	71,72	RL36	103, 104	RL52
9,10	RL5	41,42	RL21	73,74	RL37	105, 106	RL53
11,12	RL6	43, 44	RL22	75,76	RL38	107,108	RL54
13,14	RL7	45,46	RL23	77, 78	RL39	109, 110	RL55
15,16	RL8	47, 48	RL24	79,80	RL40	111, 112	RL56
17, 18	RL9	49,50	RL25	81,82	RL4	113,114	RL57
19, 20	RL10	51,52	RL26	83,84	RL42	115,116	RL58
21,22	RL11	53,54	RL27	85,86	RL43	117, 118	RL59
23, 24	RL12	55, 56	RL28	87,88	RL44	119,120	RL60
25, 26	RL13	57, 58	RL29	89, 90	RL45	121,122	RL61
27, 28	RL14	59,60	RL30	91,92	RL46	123,124	RL62
29,30	RL15	61,62	RL31	93,94	RL47	125,126	RL63
31,32	RL16	63,64	RL32	95,96	RL48	127, 128	RL64

M9102A Functional Verification Test Record - Closed Channel Resistance

Channel No.	Path Resistance*	Measured Value	Channel No.	Path Resistance*	Measured Value
1	< 1.50Ω		65	< 1.50Ω	
2	< 1.50Ω		66	< 1.50Ω	
3	< 1.50Ω		67	< 1.50Ω	
4	< 1.50Ω		68	< 1.50Ω	
5	< 1.50Ω		69	< 1.50Ω	
6	< 1.50Ω		70	< 1.50Ω	
7	< 1.50Ω		71	< 1.50Ω	
8	< 1.50Ω		72	< 1.50Ω	
9	< 1.50Ω		73	< 1.50Ω	
10	< 1.50Ω		74	< 1.50Ω	
11	< 1.50Ω		75	< 1.50Ω	
12	< 1.50Ω		76	< 1.50Ω	
13	< 1.50Ω		77	< 1.50Ω	
14	< 1.50Ω		78	< 1.50Ω	
15	< 1.50Ω		79	< 1.50Ω	
16	< 1.50Ω		80	< 1.50Ω	
17	< 1.50Ω		81	< 1.50Ω	
18	< 1.50Ω		82	< 1.50Ω	
19	< 1.50Ω		83	< 1.50Ω	
20	< 1.50Ω		84	< 1.50Ω	
21	< 1.50Ω		85	< 1.50Ω	
22	< 1.50Ω		86	< 1.50Ω	
23	< 1.50Ω		87	< 1.50Ω	
24	< 1.50Ω		88	< 1.50Ω	
25	< 1.50Ω		89	< 1.50Ω	
26	< 1.50Ω		90	< 1.50Ω	
27	< 1.50Ω		91	< 1.50Ω	
28	< 1.50Ω		92	< 1.50Ω	
29	< 1.50Ω		93	< 1.50Ω	
30	< 1.50Ω		94	< 1.50Ω	
31	< 1.50Ω		95	< 1.50Ω	
32	< 1.50Ω		96	< 1.50Ω	
33	< 1.50Ω		97	< 1.50Ω	
34	< 1.50Ω		98	< 1.50Ω	
35	< 1.50Ω		99	< 1.50Ω	
36	< 1.50Ω		100	< 1.50Ω	
37	< 1.50Ω		101	< 1.50Ω	
38	< 1.50Ω		102	< 1.50Ω	
39	< 1.50Ω		103	< 1.50Ω	
40	< 1.50Ω		104	< 1.50Ω	
41	< 1.50Ω		105	< 1.50Ω	
42	< 1.50Ω		106	< 1.50Ω	
43	< 1.50Ω		107	< 1.50Ω	
44	< 1.50Ω		108	< 1.50Ω	
45	< 1.50Ω		109	< 1.50Ω	
46	< 1.50Ω		110	< 1.50Ω	
47	< 1.50Ω		111	< 1.50Ω	

Channel	Path		Channel	Path	
No.	Resistance*	Measured Value	No.	Resistance*	Measured Value
48	< 1.50Ω		112	< 1.50 ת	
49	< 1.50Ω		113	< 1.50Ω	
50	< 1.50Ω		114	< 1.50Ω	
51	< 1.50Ω		115	< 1.50Ω	
52	< 1.50Ω		116	< 1.50Ω	
53	< 1.50Ω		117	< 1.50Ω	
54	< 1.50Ω		118	< 1.50Ω	
55	< 1.50Ω		119	$<1.50 \Omega$	
56	< 1.50Ω		120	< 1.50Ω	
57	< 1.50Ω		121	< 1.50Ω	
58	< 1.50Ω		122	< 1.50Ω	
59	< 1.50Ω		123	< 1.50Ω	
60	< 1.50Ω		124	< 1.50Ω	
61	< 1.50Ω		125	< 1.50Ω	
62	< 1.50Ω		126	< 1.50Ω	
63	< 1.50Ω		127	< 1.50Ω	
64	$<1.50 \Omega$		128	$<1.50 \Omega$	

[^1]
M9102A Schematic

Figure 9 M9102A Schematic
Notes:

- Numbers in parenthesis are front panel connector pin numbers.
- RL66 is loaded on the PC board but is not used on the M9102A module. See note on page 30.
- See "Channel to Relay Numbers" on page 33 for the relationship between relay numbers (RLxx) and channel numbers

M9102A PC Board Layout

Figure 10 M9102A PC Board Relay Layout

Figure 11 shows the back side (solder side of the M9102A) and also shows the relay contact connections (the center two terminals are for the relay coil drive). Note that relays RL65, RL66, and RL67 are reversed.

Figure 11 Back side (solder side) of M9102A showing relay contacts

4 M9103A Multiplexer, 99 channel, 2-wire Armature Relays

Introduction

Keysight's M9103A high density multiplexer module operates as a conventional multiplexer module with break-before-make action. This module uses armature relays. Relays on this module are Ruthenium sputtered reed relays. Front panel connections are through a high density 200 pin Low Force Helix (LFH) connector. See Figure 12 on page 41.

Isolation relays (RL100 and RL101) connect the 99 individual channels to the module's COMmon Hi and Low. Refer to the schematic Figure 14 on page 45. This allows for minimum capacitive loading and leakage currents in large multiplexer systems.

Default switch path

The isolation and all channel relays are open.

Replacement Relays

One spare channel relay (RL103) is loaded on the M9103A PC board. Refer to Figure 15. To use this relay, you must desolder it from the PC board and solder it in place of a defective channel relay. Additional channel or isolation relays may be ordered from Keysight using part number 0490-2919.

CAUTION

To maintain typical switching characteristics (refer to the module data sheet) and user safety, use only Keysight-specified relays. Do not substitute relays unless directed by Keysight support.

	151	Ch4	150	Ch3H	51	Ch2 ${ }^{\text {r }}$	50	Ch1 H
151 150 51 50 15 15	152	Ch4L	149	Ch3L	52	Ch2L	49	Ch 1 L
	153	Ch8 ${ }^{\text {r }}$	148	Ch7H	53	Ch6H	48	Ch5
	154	Ch8L	147	Ch7L	54	Ch6L	47	Ch5L
154 147 54 47 155 146 56 46 1	155	Ch 12 H	146	Ch 11 H	55	Ch 10 H	46	Ch9 ${ }^{\text {r }}$
155 146 56 46 156 145 56 45	156	Ch12L	145	Ch11L	56	Ch 10L	45	Ch91
175 14445	157	Ch 16 H	144	Ch 15 H	57	Ch 14 H	44	Ch 13 H
158] 14335588	158	Ch 16 L	143	Ch 15L	58	Ch 14L	43	Ch13L
159 [142 [59 [42	159	Ch 20 H	142	Ch 19 H	59	Ch 18 H	42	Ch 17 H
100] 141	160	Ch20L	141	Ch 19L	60	Ch18L	41	Ch17L
	161	Ch24 H	140	Ch 23 H	61	Ch 22 H	40	Ch 21 H
162 $1 3 9 \longdiv { 5 2 } \boxed { 5 9 }$	162	Ch24L	139	Ch23L	62	Ch22L	39	Ch21L
	163	Ch 28 H	138	Ch 27 H	63	Ch 26 H	38	Ch 25 H
$164][137[84]$	164	Ch28L	137	Ch 27L	64	Ch26L	37	Ch25L
	165	Ch 32 H	136	Ch 31 H	65	Ch 30 H	36	Ch 29 H
	166	Ch32L	135	Ch31 H	66	Ch 301	35	Ch29L
167] [134 $67{ }^{34}$	167	Ch36 H	134	Ch 35 H	67	Ch 34 H	34	Ch33H
188 $1 3 3 \longdiv { 6 8 }$	168	Ch36L	133	Ch35L	68	Ch34L	33	Ch33L
169) 1326 69 32	169	Ch 40 H	132	Ch 39 H	69	Ch 38 H	32	Ch 37 H
	170	Ch 40L	131	Ch391	70	Ch 38 L	31	Ch37L
	171	Ch 44 H	130	Ch 43 H	71	Ch 42 H	30	Ch 41 H
	172	Ch44L	129	Ch43L	72	Ch 42 L	29	Ch41L
173 128 17 28 174 157 74 27	173	Ch 48 H	128	Ch 47 H	73	Ch 46 H	28	Ch 45 H
	174	Ch 48 L	127	Ch 47 L	74	Ch 46L	27	Ch 45 L
	175	Ch 52 H	126	Ch 51 H	75	Ch 50 H	26	Ch 49 H
[17] $1 2 4 \longdiv { 7 7 }$	176	Ch 52 L	125	Ch 51 L	76	Ch 50 L	25	Ch 49 L
[178 1123 788 23	177	Ch 56 H	124	Ch 55 H	77	Ch 54 H	24	Ch 53 H
179 11275	178	Ch56L	123	Ch 55 L	78	Ch 54 L	23	Ch53L
[180] 1218 [80 21	179	Ch 60 H	122	Ch 59 H	79	Ch 58 H	22	Ch 57 H
181 120 81 20	180	Ch60L	121	Ch 59L	80	Ch 58 L	21	Ch 57L
$1 8 2 \longdiv { 1 1 9 } 8 8$	181	Ch64 H	120	Ch 63 H	81	Ch 62 H	20	Ch61 H
183 $1 1 8 \longdiv { 8 3 }$	182	Ch64L	119	Ch63L	82	Ch 62 L	19	Ch61L
$1 8 4 \longdiv { 1 1 7 \longdiv { 8 4 } \square }$	183	Ch 68 H	118	Ch 67 H	83	Ch 66 H	18	Ch 65 H
[185 1165	184	Ch68L	117	Ch67L	84	Ch66L	17	Ch65L
	185	Ch 72 H	176	Ch 71 H	85	Ch 70 H	16	Ch 69 H
	186	Ch72L	115	Ch71L	86	Ch70L	15	Ch69L
$188 \square 113 \square 13$	187	Ch76H	114	Ch 75 H	87	Ch74 H	14	Ch 73 H
	188	Ch76L	113	Ch75L	88	Ch74	13	Ch73L
-190 111×11	189	Ch 80 H	112	Ch79 H	89	Ch 78 H	12	Ch 77 H
	190	Ch80L	111	Ch79L	90	Ch78L	11	Ch77L
192 109 92 9 198 108 93 8	191	Ch84H	110	Ch 83 H	91	Ch 82 H	10	Ch81H
	192	Ch84L	109	Ch 83 L	92	Ch82L	9	Ch81L
	193	Ch88 H	108	Ch 87 H	93	Ch 86 H	8	Ch85 H
	194	Ch88L	107	Ch 87 L	94	Ch86 L	7	Ch85L
[197 [104 $97 \square 4$	195	Ch92	106	Ch91 H	95	Ch90 ${ }^{\text {c }}$	6	Ch 89 H
	196	Ch92L	105	Ch91	96	Ch90	5	Ch89
199 $102 \square 5$	197	Ch 96 H	104	Ch95 ${ }^{\text {c }}$	97	Ch94 H	4	Ch 93 H
$2004101400 \mid 1$	198	Ch96L	103	Ch95L	98	Ch94	3	Ch93L
\bigcirc	199	COM H	102	Ch99 H	99	Ch98H	2	Ch97H
	200	COML	101	Ch99L	100	CH98L	1	Ch97L

Figure 12 M9103A Connector and Pinout (viewed from the front panel)

Troubleshooting and Functional Verification Testing

To troubleshoot and verify the relays on the module, perform a closed channel resistance test on each channel. This procedure does not provide performance or specification verification.

CAUTION

Remove all user wiring and connections from the plug-in modules before troubleshooting or verification.

When all relays are "open," a resistance measured on any channel path indicates a welded contacts condition and the relay or module must be replaced. There is no specific path resistance or test for this failure.

The path resistance characteristic assumes that the individual channel connections on the module front panel are shorted and the DMM is connected to the COMmon terminals. See Figure 13.

Figure 13 M9103A Contact Resistance Test

Note that this includes four relay contacts -- the two channel relay contacts (Hi and Lo) and one contact on relays RL100 and RL101. The typical initial path resistance is approximately $470 \mathrm{~m} \Omega$.. Alternately, you can measure the contact resistance COM Hi to the channel Hi terminals and then from the COM Lo to the channel Lo terminals. In this case, the contact resistance should be approximately one-half of the total path resistance.

M9103A Functional Verification Test Record - Closed Channel Resistance

Channel No.	Path Resistance*	Measured Value	Channel No.	Path Resistance*	Measured Value
1	< 1.0Ω		51	< 1.0Ω	
2	< 1.0Ω		52	< 1.0Ω	
3	$<1.0 \Omega$		53	$<1.0 \Omega$	
4	< 1.0Ω		54	< 1.0Ω	
5	$<1.0 \Omega$		55	$<1.0 \Omega$	
6	$<1.0 \Omega$		56	$<1.0 \Omega$	
7	< 1.0Ω		57	< 1.0Ω	
8	< 1.0Ω		58	< 1.0Ω	
9	$<1.0 \Omega$		59	$<1.0 \Omega$	
10	$<1.0 \Omega$		60	$<1.0 \Omega$	
11	$<1.0 \Omega$		61	$<1.0 \Omega$	
12	$<1.0 \Omega$		62	$<1.0 \Omega$	
13	< 1.0Ω		63	< 1.0Ω	
14	$<1.0 \Omega$		64	$<1.0 \Omega$	
15	$<1.0 \Omega$		65	$<1.0 \Omega$	
16	< 1.0Ω		66	< 1.0Ω	
17	$<1.0 \Omega$		67	$<1.0 \Omega$	
18	< 1.0Ω		68	< 1.0Ω	
19	< 1.0Ω		69	< 1.0Ω	
20	$<1.0 \Omega$		70	$<1.0 \Omega$	
21	< 1.0Ω		71	< 1.0Ω	
22	$<1.0 \Omega$		72	$<1.0 \Omega$	
23	$<1.0 \Omega$		73	$<1.0 \Omega$	
24	$<1.0 \Omega$		74	$<1.0 \Omega$	
25	$<1.0 \Omega$		75	$<1.0 \Omega$	
26	$<1.0 \Omega$		76	$<1.0 \Omega$	
27	< 1.0Ω		77	< 1.0Ω	
28	$<1.0 \Omega$		78	$<1.0 \Omega$	
29	$<1.0 \Omega$		79	$<1.0 \Omega$	
30	$<1.0 \Omega$		80	$<1.0 \Omega$	
31	$<1.0 \Omega$		81	$<1.0 \Omega$	
32	$<1.0 \Omega$		82	$<1.0 \Omega$	
33	< 1.0Ω		83	< 1.0Ω	
34	$<1.0 \Omega$		84	$<1.0 \Omega$	
35	$<1.0 \Omega$		85	$<1.0 \Omega$	
36	$<1.0 \Omega$		86	$<1.0 \Omega$	
37	$<1.0 \Omega$		87	$<1.0 \Omega$	
38	$<1.0 \Omega$		88	$<1.0 \Omega$	
39	$<1.0 \Omega$		89	$<1.0 \Omega$	
40	< 1.0Ω		90	$<1.0 \Omega$	
41	$<1.0 \Omega$		91	< 1.0Ω	
42	$<1.0 \Omega$		92	$<1.0 \Omega$	
43	$<1.0 \Omega$		93	$<1.0 \Omega$	
44	< 1.0Ω		94	$<1.0 \Omega$	

Channel No.	Path Resistance	Measured Value	Channel No.	Path Resistance	Measured Value
45	< 1.0Ω		95	< 1.0Ω	
46	$<1.0 \Omega$		96	< 1.0Ω	
47	$<1.0 \Omega$		97	$<1.0 \Omega$	
48	$<1.0 \Omega$		98	$<1.0 \Omega$	
49	$<1.0 \Omega$		99	< 1.0Ω	
50	< 1.0Ω				

* Functional test limit

M9103A Schematic

Figure 14 M9103A Schematic
Notes:

- Numbers in parenthesis are front panel connector pin numbers.
- RL102 is loaded on the PC board but is not used on the M9103A module.
- Channel relay numbers (RL1 - RL99) correspond to channel numbers.

M9103A PC Board Layout

Figure 15 M9103A PC Board Relay Layout

Figure 16 shows the backside (solder side of the M9103A) and also shows the relay contact connections.

Figure 16 Back side (solder side) of M9103A showing relay contacts

5 M9120A Matrix Switch, 4x32, 2-wire Armature Relays

Introduction

Each M9120A Matrix Switch module is constructed as four separate matrices; each matrix is 32×1 for a total of 128 two pole armature relays. The schematics (Figure 19 and Figure 20) are drawn as four separate matrices (one matrix for each row).

This module is designed to switch medium voltage/power signals in test applications where reed relays do not have sufficient rating. It is suitable for telecoms applications where send and return signals need to be switched simultaneously.
The front panel connector is a 78 pin D style connector. See Figure 17 on page 49

Default switch path

All cross point relays are open.

Replacement relays

One spare channel relay (RL131) is loaded on the M9120A PC board. Refer to Figure 21. To use this relay, you must desolder it from the PC board and solder it in place of a defective channel relay. Additional channel relays may be ordered from Keysight using part number 0490-2919.

CAUTION

To maintain typical switching characteristics (refer to the module data sheet) and user safety, use only Keysight-specified relays. Do not substitute relays unless directed by Keysight support.

(viewed from the front panel)	Pin No.	Signal						
	60	Col 1 H	40	Col 1 L	21	Col 2 H	1	Col 2 L
	61	Col 3 H	41	Col 3 L	22	Col 4 H	2	Col 4 L
	62	Col 5 H	42	Col 5 L	23	Col 6 H	3	Col 6 L
	63	Col 7 H	43	Col 7 L	24	Col 8 H	4	Col 8 L
	64	Col9 H	44	Col 9 L	25	Col 10 H	5	Col 10 L
	65	Col 11 H	45	Col 11 L	26	Col 12 H	6	Col 12 L
	66	Col 13 H	46	Col 13 L	27	Col 14 H	7	Col 14 L
	67	Col 15 H	47	Col 15L	28	Col 16 H	8	Col 16L
	68	Col 17 H	48	Col 17 L	29	Col 18 H	9	Col 18 L
	69	Col 19 H	49	Col 19 L	30	Col 20 H	10	Col 20 L
	70	Col 21 H	50	Col 21 L	31	Col 22 H	11	Col 22 L
	71	Col 23 H	51	Col 23 L	32	Col 24 H	12	Col 24 L
	72	Col 25 H	52	Col 25 L	33	Col 26 H	13	Col 26 L
	73	Col 27 H	53	Col 27 L	34	Col 28 H	14	Col 28 L
	74	Col 29 H	54	Col 29 L	35	Col 30 H	15	Col 30 L
	75	Col 31 H	55	Col 31 L	36	Col 32 H	16	Col 32 L
	76	--	56	--	37	--	17	--
	77	Row 1 H	57	--	38	Row 2 H	18	--
	78	Row 3 H	58	Row 1 L	39	Row 4 H	19	Row 2 L
			59	Row 3 L			20	Row 4 L

Figure 17 M9120A Connector and Pinout

Troubleshooting and Functional Verification Testing

To troubleshoot and verify the 128 cross point relays on the module, perform a closed channel resistance test on each row/column cross point. This procedure does not provide performance or specification verification.Each M9120A Matrix Switch module is constructed as four separate matrices; each matrix is 32×1 for a total of 128 two pole relays. The schematics (Figure 19 and Figure 20) are drawn as four separate matrices. Thus:

- to connect Column 1 to Row 1, relay RL1 closes (Figure 19, top schematic)
- to connect Column 1 to Row 2, relay RL2 closes (Figure 19, bottom schematic)
- to connect Column 1 to Row 3, relay RL3 closes (Figure 20, top schematic)
- to connect Column 1 to Row 4, relay RL4 closes (Figure 20, bottom schematic), etc.

Therefore, the first step in troubleshooting is to determine which row/column is defective. Then, by referencing the schematics, you can determine which relay is defective.

CAUTION

Remove all user wiring and connections from the plug-in modules before troubleshooting or verification.

When all relays are "open," a resistance measured on any channel path indicates a welded contacts condition and the relay or module must be replaced. There is no specific path resistance or test for this failure.
The differential internal path resistance characteristic assumes that the individual Column connections on the module front panel are shorted and the DMM is connected to the Row terminals. See Figure 18.

After testing Row 1 to each column, move the DMM to Row 2 and test the columns, then Row three to all columns, and finally Row 4 to all columns.

NOTE

Relays 129 and 130 on the PC board, are used for internal Keysight testing only.

Figure 18 M9120A Contact Resistance Test

Note that this includes two relay contacts -- the two cross point channel relay contacts (Hi and Lo). The typical initial path resistance is approximately $500 \mathrm{~m} \Omega$. Alternately, you can measure the contact resistance Row Hi to the Column Hi terminals and then from the Row Lo to the Column Lo terminals. In this case, the contact resistance should be approximately half the full path resistance.

M9120A Functional Verification Test Record - Closed Channel Resistance

Row/Col Path	Path Resistance* Measured Value	Row/Col Path	Path Resistance ${ }^{*}$	Measured Value
Row 1		Row 2		
R1Col1	< 1.40Ω	R2Col1	< 1.40Ω	
R1Col2	< 1.40Ω	R2Col2	< 1.40Ω	
R1Col3	< 1.40Ω	R2Col3	< 1.40Ω	
R1Col4	< 1.40Ω	R2Col4	< 1.40Ω	
R1Col5	< 1.40Ω	R2Col5	< 1.40Ω	
R1Col6	< 1.40Ω	R2Col6	< 1.40Ω	
R1Col7	< 1.40Ω	R2Col7	< 1.40Ω	
R1Col8	< 1.40Ω	R2Col8	< 1.40Ω	
R1Col9	< 1.40Ω	R2Col9	< 1.40Ω	

Row/Col Path	Path Resistance*	Measured Value	Row/Col Path	Path Resistance*	Measured Value
R1Col10	< 1.40Ω		R2Col10	< 1.40Ω	
R1Col11	< 1.40Ω		R2Col11	< 1.40Ω	
R1Col12	< 1.40Ω		R2Col12	< 1.40Ω	
R1Col13	< 1.40Ω		R2Col13	< 1.40Ω	
R1Col14	< 1.40Ω		R2Col14	< 1.40Ω	
R1Col15	< 1.40Ω		R2Col15	< 1.40Ω	
R1Col16	< 1.40Ω		R2Col16	< 1.40Ω	
R1Col17	< 1.40Ω		R2Col17	< 1.40Ω	
R1Col18	$<1.40 \Omega$		R2Col18	< 1.40Ω	
R1Col19	< 1.40Ω		R2Col19	$<1.40 \Omega$	
R1Col20	< 1.40Ω		R2Col20	$<1.40 \Omega$	
R1Col21	< 1.40Ω		R2Col21	< 1.40Ω	
R1Col22	< 1.40Ω		R2Col22	$<1.40 \Omega$	
R1Col23	$<1.40 \Omega$		R2Col23	$<1.40 \Omega$	
R1Col24	$<1.40 \Omega$		R2Col24	$<1.40 \Omega$	
R1Col25	$<1.40 \Omega$		R2Col25	$<1.40 \Omega$	
R1Col26	$<1.40 \Omega$		R2Col26	$<1.40 \Omega$	
R1Col27	$<1.40 \Omega$		R2Col27	< 1.40Ω	
R1Col28	$<1.40 \Omega$		R2Col28	< 1.40Ω	
R1Col29	< 1.40Ω		R2Col29	< 1.40Ω	
R1Col30	< 1.40Ω		R2Col30	< 1.40Ω	
R1Col31	< 1.40Ω		R2Col31	$<1.40 \Omega$	
R1Col32	< 1.40Ω		R2Col32	$<1.40 \Omega$	

Row 3	
R3Col1	$<1.40 \Omega$
R3Col2	$<1.40 \Omega$
R3Col3	$<1.40 \Omega$
R3Col4	$<1.40 \Omega$
R3Col5	$<1.40 \Omega$

Row 4	
R4Col1	$<1.40 \Omega$
R4Col2	$<1.40 \Omega$
R4Col3	$<1.40 \Omega$
R4Col4	$<1.40 \Omega$
R4Col5	$<1.40 \Omega$

Row/Col Path	Path Resistance*	Measured Value	Row/Co Path	Path Resistance*	Measured Value
R3Col6	< 1.40Ω		R4Col6	< 1.40Ω	
R3Col7	$<1.40 \Omega$		R4Col7	< 1.40Ω	
R3Col8	< 1.40Ω		R4Col8	< 1.40Ω	
R3Col9	< 1.40Ω		R4Col9	< 1.40Ω	
R3Col10	< 1.40Ω		R4Col10	< 1.40Ω	
R3Col11	< 1.40Ω		R4Col11	< 1.40Ω	
R3Col12	< 1.40Ω		R4Col12	< 1.40Ω	
R3Col13	< 1.40Ω		R4Col13	< 1.40Ω	
R3Col14	< 1.40Ω		R4Col14	< 1.40Ω	
R3Col15	< 1.40Ω		R4Col15	$<1.40 \Omega$	
R3Col16	< 1.40Ω		R4Col16	$<1.40 \Omega$	
R3Col17	$<1.40 \Omega$		R4Col17	$<1.40 \Omega$	
R3Col18	$<1.40 \Omega$		R4Col18	< 1.40Ω	
R3Col19	$<1.40 \Omega$		R4Col19	$<1.40 \Omega$	
R3Col20	< 1.40Ω		R4Col20	$<1.40 \Omega$	
R3Col21	< 1.40Ω		R4Col21	$<1.40 \Omega$	
R3Col22	< 1.40Ω		R4Col22	$<1.40 \Omega$	
R3Col23	< 1.40Ω		R4Col23	< 1.40Ω	
R3Col24	< 1.40Ω		R4Col24	< 1.40Ω	
R3Col25	$<1.40 \Omega$		R4Col25	$<1.40 \Omega$	
R3Col26	$<1.40 \Omega$		R4Col26	< 1.40Ω	
R3Col27	$<1.40 \Omega$		R4Col27	< 1.40Ω	
R3Col28	$<1.40 \Omega$		R4Col28	$<1.40 \Omega$	
R3Col29	$<1.40 \Omega$		R4Col29	$<1.40 \Omega$	
R3Col30	< 1.40Ω		R4Col30	< 1.40Ω	
R3Col31	< 1.40Ω		R4Col31	$<1.40 \Omega$	
R3Col32	< 1.40Ω		R4Col32	< 1.40Ω	

[^2]
M9120A Schematic

Figure 19 M9120A Schematic (Rows 1 and 2) numbers in parenthesis are front panel connector pin numbers

Figure 20 M9120A Schematic (Rows 3 and 4) numbers in parenthesis are front panel connector pin numbers

M9120A PC Board Layout

Figure 21 M9120A PC Board Relay Layout
Relays 129 and 130 on the PC board, are used for internal Keysight testing only.

Figure 22 M9120A Backside (solder side) of PC Board showing relay locations

6 M9121A Matrix Switch, 4x64, 2-wire Reed Relays

Introduction

Keysight's M9121A Matrix Switch module is an ultra high density module configured as a 64 column by four row matrix. Each relay is a 2-pole switch.

The 256 relays on this modules are high reliability sputtered Ruthenium reed relays, offering $>10^{9}$ operations to provide long life and stable contact resistance. Connections to the modules are through a high density 200 pin Low Force Helix (LFH) connector. See Figure 23.

Default switch path

All 256 cross point relays are open.

Replacement relays

One spare channel relay (RL257) is loaded on the M9121A PC board. Refer to Figure 29. To use this relay, you must desolder it from the PC board and solder it in place of a defective channel relay. Additional channel relays may be ordered from Keysight using part number 0490-2965

CAUTION

To maintain typical switching characteristics (refer to the module data sheet) and user safety, use only Keysight-specified relays. Do not substitute relays unless directed by Keysight support.

Introduction

Figure 23 M9121A Connector and Pinout (viewed from the front panel, "--" indicates pins not used)

Troubleshooting and Functional Verification Testing

To troubleshoot and verify the 256 cross point relays on the module, perform a closed channel resistance test on each row/column cross point. This procedure does not provide performance or specification verification. Each M9121A Matrix Switch module is constructed as four separate matrices; each matrix is 64×1 for a total of 256 two pole armature relays. The schematics (Figure 25 through Figure 28) are drawn as four separate matrices. Thus:

- to connect Column 1 to Row 1, relay RL1 closes (Figure 25)
- to connect Column 1 to Row 2, relay RL65closes (Figure 26)
- to connect Column 1 to Row 3, relay RL129 closes (Figure 27)
- to connect Column 1 to Row 4, relay RL193 closes (Figure 28), etc.

Therefore, the first step in troubleshooting is to determine which row/column is defective. Then, by referencing the schematics, you can determine which relay is defective.

CAUTION

Remove all user wiring and connections from the plug-in modules before troubleshooting or verification.

When all relays are "open," a resistance measured on any channel path indicates a welded contacts condition and the relay or module must be replaced. There is no specific path resistance or test for this failure.

The differential internal path resistance characteristic assumes that the individual COLumn connections on the module front panel are shorted and the DMM is connected to each of the ROW terminals. See Figure 24.

Figure $\mathbf{2 4}$ M9121A Contact Resistance Test

Note that this includes two relay contacts -- the two channel relay contacts (Hi and Lo). The typical initial path resistance is approximately $900 \mathrm{~m} \Omega$.. Alternately, you can measure the contact resistance COL Hi to the Row Hi terminals and then from the COL Lo to the Row Lo terminals. In this case, the contact resistance should be approximately one-half of the total path resistance.

M9121A Functional Verification Test Record -- Closed Channel Resistance

$\begin{aligned} & \text { Row/Col } \\ & \text { Path } \end{aligned}$	Path Resistance	Measured Value	Row/Col Path	Path Resistance*	Measured Value
Row 1			Row 2		
R1Col1	<2.70 Ω		R2Col1	< 2.70Ω	
R1Col2	$<2.70 \Omega$		R2Col2	$<2.70 \Omega$	
R1Col3	$<2.70 \Omega$		R2Col3	$<2.70 \Omega$	
R1Col4	< 2.70Ω		R2Col4	$<2.70 \Omega$	
R1Col5	< 2.70Ω		R2Col5	< 2.70Ω	
R1Col6	$<2.70 \Omega$		R2Col6	$<2.70 \Omega$	
R1Col7	< 2.70Ω		R2Col7	$<2.70 \Omega$	
R1Col8	< 2.70Ω		R2Col8	< 2.70Ω	
R1Col9	$<2.70 \Omega$		R2Col9	$<2.70 \Omega$	
R1Col10	$<2.70 \Omega$		R2Col10	$<2.70 \Omega$	
R1Col11	$<2.70 \Omega$		R2Col11	$<2.70 \Omega$	
R1Col12	$<2.70 \Omega$		R2Col12	$<2.70 \Omega$	
R1Col13	$<2.70 \Omega$		R2Col13	$<2.70 \Omega$	
R1Col14	$<2.70 \Omega$		R2Col14	$<2.70 \Omega$	
R1Col15	$<2.70 \Omega$		R2Col15	$<2.70 \Omega$	
R1Col16	$<2.70 \Omega$		R2Col16	$<2.70 \Omega$	
R1Col17	$<2.70 \Omega$		R2Col17	$<2.70 \Omega$	
R1Col18	$<2.70 \Omega$		R2Col18	$<2.70 \Omega$	
R1Col19	$<2.70 \Omega$		R2Col19	$<2.70 \Omega$	
R1Col20	$<2.70 \Omega$		R2Col20	$<2.70 \Omega$	
R1Col21	< 2.70Ω		R2Col21	$<2.70 \Omega$	
R1Col22	$<2.70 \Omega$		R2Col22	$<2.70 \Omega$	
R1Col23	$<2.70 \Omega$		R2Col23	$<2.70 \Omega$	
R1Col24	$<2.70 \Omega$		R2Col24	$<2.70 \Omega$	
R1Col25	$<2.70 \Omega$		R2Col25	$<2.70 \Omega$	
R1Col26	$<2.70 \Omega$		R2Col26	$<2.70 \Omega$	
R1Col27	$<2.70 \Omega$		R2Col27	$<2.70 \Omega$	
R1Col28	$<2.70 \Omega$		R2Col28	$<2.70 \Omega$	
R1Col29	$<2.70 \Omega$		R2Col29	$<2.70 \Omega$	
R1Col30	$<2.70 \Omega$		R2Col30	$<2.70 \Omega$	
R1Col31	$<2.70 \Omega$		R2Col31	$<2.70 \Omega$	
R1Col32	$<2.70 \Omega$		R2Col32	$<2.70 \Omega$	
R1Col33	$<2.70 \Omega$		R2Col33	$<2.70 \Omega$	
R1Col34	$<2.70 \Omega$		R2Col34	$<2.70 \Omega$	
R1Col35	$<2.70 \Omega$		R2Col35	$<2.70 \Omega$	
R1Col36	$<2.70 \Omega$		R2Col36	$<2.70 \Omega$	
R1Col37	<2.70 Ω		R2Col37	$<2.70 \Omega$	

Row/Col Path	$\begin{aligned} & \text { Path } \\ & \text { Resistance } \end{aligned}$	Measured Value	Row/Col Path	Path Resistance	Measured Value
R1Col38	< 2.70Ω		R2Col38	< 2.70Ω	
R1Col39	<2.70 Ω		R2Col39	$<2.70 \Omega$	
R1Col40	$<2.70 \Omega$		R2Col40	$<2.70 \Omega$	
R1Col41	< 2.70Ω		R2Col41	$<2.70 \Omega$	
R1Col42	<2.70 Ω		R2Col42	<2.70 Ω	
R1Col43	< 2.70Ω		R2Col43	< 2.70Ω	
R1Col44	<2.70 Ω		R2Col44	$<2.70 \Omega$	
R1Col45	<2.70 Ω		R2Col45	$<2.70 \Omega$	
R1Col46	< 2.70Ω		R2Col46	$<2.70 \Omega$	
R1Col47	< 2.70Ω		R2Col47	$<2.70 \Omega$	
R1Col48	< 2.70Ω		R2Col48	<2.70 Ω	
R1Col49	< 2.70Ω		R2Col49	$<2.70 \Omega$	
R1Col50	< 2.70Ω		R2Col50	$<2.70 \Omega$	
R1Col51	< 2.70Ω		R2Col51	$<2.70 \Omega$	
R1Col52	< 2.70Ω		R2Col52	< 2.70Ω	
R1Col53	< 2.70Ω		R2Col53	< 2.70Ω	
R1Col54	< 2.70Ω		R2Col54	< 2.70Ω	
R1Col55	< 2.70Ω		R2Col55	$<2.70 \Omega$	
R1Col56	< 2.70Ω		R2Col56	<2.70 Ω	
R1Col57	< 2.70Ω		R2Col57	< 2.70Ω	
R1Col58	< 2.70Ω		R2Col58	< 2.70Ω	
R1Col59	$<2.70 \Omega$		R2Col59	$<2.70 \Omega$	
R1Col60	< 2.70Ω		R2Col60	<2.70 Ω	
R1Col61	< 2.70Ω		R2Col61	< 2.70Ω	
R1Col62	< 2.70Ω		R2Col62	< 2.70Ω	
R1Col63	< 2.70Ω		R2Col63	<2.70 Ω	
R1Col164	<2.70 Ω		R2Col164	<2.70 Ω	
Row 3			Row 4		
R3Col1	<2.70 Ω		R4Col1	<2.70 Ω	
R3Col2	$<2.70 \Omega$		R4Col2	$<2.70 \Omega$	
R3Col3	< 2.70Ω		R4Col3	$<2.70 \Omega$	
R3C014	$<2.70 \Omega$		R4CO14	$<2.70 \Omega$	
R3Col5	$<2.70 \Omega$		R4Col5	$<2.70 \Omega$	
R3Col6	<2.70 Ω		R4Col6	<2.70 Ω	
R3Col7	< 2.70Ω		R4Col7	$<2.70 \Omega$	
R3Col8	<2.70 Ω		R4Col8	$<2.70 \Omega$	
R3Col9	< 2.70Ω		R4Col9	$<2.70 \Omega$	
R3Col10	< 2.70Ω		R4Col10	$<2.70 \Omega$	
R3Col11	<2.70 Ω		R4Col11	$<2.70 \Omega$	
R3Col12	< 2.70Ω		R4Col12	$<2.70 \Omega$	
R3Col13	<2.70 Ω		R4Col13	$<2.70 \Omega$	
R3Col14	<2.70 Ω		R4Col14	$<2.70 \Omega$	
R3Col15	< 2.70Ω		R4Col15	$<2.70 \Omega$	
R3Col16	< 2.70Ω		R4Col16	< 2.70Ω	
R3Col17	<2.70 Ω		R4Col17	$<2.70 \Omega$	
R3Col18	< 2.70Ω		R4Col18	$<2.70 \Omega$	
R3Col19	<2.70 Ω		R4Col19	< 2.70Ω	
R3Col20	< 2.70Ω		R4Col20	<2.70 Ω	
R3Col21	< 2.70Ω		R4Col21	< 2.70Ω	
R3Col22	< 2.70Ω		R4Col22	<2.70 Ω	

$\begin{aligned} & \text { Row/Col } \\ & \text { Path } \end{aligned}$	Path Resistance*	Measured Value	$\begin{aligned} & \text { Row/Col } \\ & \text { Path } \end{aligned}$	Path Resistance ${ }^{*}$	Measured Value
R3Col23	< 2.70Ω		R4Col23	< 2.70Ω	
R3Col24	<2.70 Ω		R4Col24	<2.70 Ω	
R3Col25	<2.70 Ω		R4Col25	<2.70 Ω	
R3Col26	< 2.70Ω		R4Col26	< 2.70Ω	
R3Col27	< 2.70Ω		R4Col27	< 2.70Ω	
R3Col28	< 2.70Ω		R4Col28	< 2.70Ω	
R3Col29	< 2.70Ω		R4Col29	< 2.70Ω	
R3Col30	<2.70 Ω		R4Col30	< 2.70Ω	
R3Col31	<2.70 Ω		R4Col31	<2.70 Ω	
R3Col32	<2.70 Ω		R4Col32	<2.70 Ω	
R3Col33	< 2.70Ω		R4Col33	< 2.70Ω	
R3Col34	< 2.70Ω		R4Col34	< 2.70Ω	
R3Col35	< 2.70Ω		R4Col35	<2.70 Ω	
R3Col36	<2.70 Ω		R4Col36	<2.70 Ω	
R3Col37	< 2.70Ω		R4Col37	<2.70 Ω	
R3Col38	< 2.70Ω		R4Col38	< 2.70Ω	
R3Col39	< 2.70Ω		R4Col39	< 2.70Ω	
R3Col40	< 2.70Ω		R4Col40	< 2.70Ω	
R3Col41	< 2.70Ω		R4Col41	<2.70 Ω	
R3Col42	< 2.70Ω		R4Col42	< 2.70Ω	
R3Col43	< 2.70Ω		R4Col43	< 2.70Ω	
R3Col44	< 2.70Ω		R4Col44	< 2.70Ω	
R3Col45	< 2.70Ω		R4Col45	< 2.70Ω	
R3Col46	< 2.70Ω		R4Col46	< 2.70Ω	
R3Col47	< 2.70Ω		R4Col47	< 2.70Ω	
R3Col48	< 2.70Ω		R4Col48	< 2.70Ω	
R3Col49	< 2.70Ω		R4Col49	< 2.70Ω	
R3Col50	< 2.70Ω		R4Col50	< 2.70Ω	
R3Col51	< 2.70Ω		R4Col51	< 2.70Ω	
R3Col52	< 2.70Ω		R4Col52	< 2.70Ω	
R3Col53	< 2.70Ω		R4Col53	< 2.70Ω	
R3Col54	< 2.70Ω		R4Col54	< 2.70Ω	
R3Col55	< 2.70Ω		R4Col55	< 2.70Ω	
R3Col56	< 2.70Ω		R4Col56	< 2.70Ω	
R3Col57	< 2.70Ω		R4Col57	< 2.70Ω	
R3Col58	< 2.70Ω		R4Col58	< 2.70Ω	
R3Col59	<2.70 Ω		R4Col59	<2.70 Ω	
R3Col60	< 2.70Ω		R4Col60	< 2.70Ω	
R3Col61	< 2.70Ω		R4Col61	< 2.70Ω	
R3Col62	< 2.70Ω		R4Col62	$<2.70 \Omega$	
R3Col63	< 2.70Ω		R4Col63	$<2.70 \Omega$	
R3Col64	< 2.70Ω		R4Col64	<2.70 Ω	

[^3]
M9121A Schematic

Figure 25 M9121A Schematic (Row 1)
(numbers in parenthesis are front panel connector pin numbers)

Figure 26 M9121A Schematic (Row 2)

> numbers in parenthesis are front panel connector pin numbers

Figure 27 M9121A Schematic (Row 3)
numbers in parenthesis are front panel connector pin numbers

Figure 28 M9121A Schematic (Row 4) numbers in parenthesis are front panel connector pin numbers

M9121A PC Board Layout

Figure 29 M9121A PC Board Relay Layout

NOTE

Relays 258 and 259 on the PC board, are used for internal Keysight testing only.

Figure 30 M9121A Backside of PC Board (solder side)

7 M9122A Matrix Switch, 8x32, 1-wire Armature Relays

Introduction

Keysight's M9122A Matrix Switch module is a high density module configured as a 32 column by eight row matrix. Each relay is a single-pole switch.

The 256 cross point relays on this modules are high reliability Palladium-Ruthenium, gold plated, bifurcated armature relays, providing long life and stable contact resistance. Connections to the modules are through a $50-$ pin connector. See Figure 31 on page 71.

Default switch path

All cross point relays are open.

Replacement Relays

One spare channel relay (RL258) is loaded on the M9122A PC board. Refer to Figure 37. To use this relay, you must desolder it from the PC board and solder it in place of a defective channel relay. Additional channel relays may be ordered from Keysight using part number 0490-2919

CAUTION
 To maintain typical switching characteristics (refer to the module data sheet) and user safety, use only Keysight-specified relays. Do not substitute relays unless directed by Keysight support.
 NOTE
 Relay 259 on the PC board is used for internal Keysight testing only.

	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal
	1	Row 3	18	Row 2	34	Row 1
	2	Row 6	19	Row 5	35	Row 4
	3	--	20	Row 8	36	Row 7
	4	--	21	--	37	--
	5	--	22	--	38	--
	6	Col 3	23	Col 2	39	Col 1
	7	Col 6	24	Col 5	40	Col 4
	8	Col 9	25	Col 8	41	Col 7
	9	Col 12	26	Col 11	42	Col 10
	10	Col15	27	Col 14	43	Col 13
	11	Col 18	28	Col 17	44	Col 16
	12	Col 21	29	Col 20	45	Col 19
	13	Col 24	30	Col 23	46	Col 22
	14	Col 27	31	Col 26	47	Col 25
	15	Col 30	32	Col 29	48	Col 28
	16	--	33	Col 32	49	Col 31
	17	--	-- indicates pins not used)			
(viewed from the front panel)						

Figure 31 M9122A Connector and Pinout

Troubleshooting and Functional Verification Testing

To troubleshoot and verify the 256 cross point relays on the module, perform a closed channel resistance test on each row/column cross point. This procedure does not provide performance or specification verification. Each M9122A Matrix Switch module is constructed as eight separate matrices; each matrix is 32×1 for a total of 256 relays. The schematics (Figure 33 through Figure 36) are drawn as separate matrices. Thus:

- to connect Column 1 to Row 1, relay RL1 closes (Figure 33, top schematic)
- to connect Column 1 to Row 2, relay RL33 closes (Figure 33, bottom)
- to connect Column 1 to Row 3, relay RL65 closes (Figure 34, top)
- to connect Column 1 to Row 4, relay RL97 closes (Figure 34, bottom), etc.

Therefore, the first step in troubleshooting is to determine which row/column is defective. Then, by referencing the schematics, you can determine which relay is defective.

CAUTION

Remove all user wiring and connections from the plug-in modules before troubleshooting or verification.

When all relays are "open," a resistance measured on any channel path indicates a welded contacts condition and the relay or module must be replaced. There is no specific path resistance or test for this failure.

The single ended path resistance characteristic assumes a measurement from each COLumn terminal to a ROW terminal. You will need to measure each column to each row. See Figure 32.

Figure 32 M9122A Contact Resistance Test

Note that this includes two relay contacts. The typical initial path resistance is approximately $250 \mathrm{~m} \Omega$..

M9122A Functional Verification Test Record - Closed Channel Resistance

Row/Col Path	Path Resistance*	Measured Value	Row/Col Path	Path Resistance ${ }^{*}$	Measured Value
Row 1			Row 2		
R1Col1	< 1.40Ω		R2Col1	< 1.40Ω	
R1Col2	$<1.40 \Omega$		R2Col2	< 1.40Ω	
R1Col3	< 1.40Ω		R2Col3	< 1.40Ω	
R1Col4	< 1.40Ω		R2Col4	< 1.40Ω	
R1Col5	< 1.40Ω		R2Col5	< 1.40Ω	
R1Col6	< 1.40Ω		R2Col6	< 1.40Ω	
R1Col7	< 1.40Ω		R2Col7	< 1.40Ω	
R1Col8	< 1.40Ω		R2Col8	< 1.40Ω	
R1Col9	< 1.40Ω		R2Col9	< 1.40Ω	
R1Col10	< 1.40Ω		R2Col10	< 1.40Ω	
R1Col11	< 1.40Ω		R2Col11	< 1.40Ω	
R1Col12	< 1.40Ω		R2Col12	< 1.40Ω	
R1Col13	< 1.40Ω		R2Col13	< 1.40Ω	
R1Col14	< 1.40Ω		R2Col14	< 1.40Ω	
R1Col15	< 1.40Ω		R2Col15	< 1.40Ω	
R1Col16	$<1.40 \Omega$		R2Col16	< 1.40Ω	
R1Col17	< 1.40Ω		R2Col17	< 1.40Ω	
R1Col18	< 1.40Ω		R2Col18	< 1.40Ω	
R1Col19	< 1.40Ω		R2Col19	< 1.40Ω	
R1Col20	< 1.40Ω		R2Col20	< 1.40Ω	
R1Col21	< 1.40Ω		R2Col21	< 1.40Ω	
R1Col22	< 1.40Ω		R2Col22	< 1.40Ω	
R1Col23	< 1.40Ω		R2Col23	< 1.40Ω	
R1Col24	< 1.40Ω		R2Col24	< 1.40Ω	
R1Col25	< 1.40Ω		R2Col25	< 1.40Ω	
R1Col26	< 1.40Ω		R2Col26	< 1.40Ω	
R1Col27	< 1.40Ω		R2Col27	< 1.40Ω	
R1Col28	< 1.40Ω		R2Col28	< 1.40Ω	
R1Col29	< 1.40Ω		R2Col29	< 1.40Ω	
R1Col30	< 1.40Ω		R2Col30	< 1.40Ω	
R1Col31	< 1.40Ω		R2Col31	< 1.40Ω	
R1Col32	< 1.40Ω		R2Col32	< 1.40Ω	

Row/Col Path	Path Resistance	Measured Value	$\begin{aligned} & \text { Row/Col } \\ & \text { Path } \end{aligned}$	Path Resistance ${ }^{*}$	Measured Value
Row 3			Row 4		
R3Col1	< 1.40Ω		R4Col1	< 1.40Ω	
R3Col2	< 1.40Ω		R4Col2	< 1.40Ω	
R3Col3	< 1.40Ω		R4Col3	$<1.40 \Omega$	
R3Col4	< 1.40Ω		R4Col4	< 1.40Ω	
R3Col5	< 1.40Ω		R4Col5	< 1.40Ω	
R3Col6	< 1.40Ω		R4Col6	< 1.40Ω	
R3Col7	< 1.40Ω		R4Col7	< 1.40Ω	
R3Col8	< 1.40Ω		R4Col8	< 1.40Ω	
R3Col9	< 1.40Ω		R4Col9	< 1.40Ω	
R3Col10	< 1.40Ω		R4Col10	< 1.40Ω	
R3Col11	< 1.40Ω		R4Col11	< 1.40Ω	
R3Col12	< 1.40Ω		R4Col12	< 1.40Ω	
R3Col13	$<1.40 \Omega$		R4Col13	< 1.40Ω	
R3Col14	< 1.40Ω		R4Col14	< 1.40Ω	
R3Col15	< 1.40Ω		R4Col15	< 1.40Ω	
R3Col16	< 1.40Ω		R4Col16	< 1.40Ω	
R3Col17	< 1.40Ω		R4Col17	< 1.40Ω	
R3Col18	< 1.40Ω		R4Col18	< 1.40Ω	
R3Col19	< 1.40Ω		R4Col19	< 1.40Ω	
R3Col20	< 1.40Ω		R4Col20	< 1.40Ω	
R3Col21	< 1.40Ω		R4Col21	< 1.40Ω	
R3Col22	< 1.40Ω		R4Col22	< 1.40Ω	
R3Col23	< 1.40Ω		R4Col23	< 1.40Ω	
R3Col24	< 1.40Ω		R4Col24	< 1.40Ω	
R3Col25	< 1.40Ω		R4Col25	< 1.40Ω	
R3Col26	< 1.40Ω		R4Col26	< 1.40Ω	
R3Col27	< 1.40Ω		R4Col27	< 1.40Ω	
R3Col28	< 1.40Ω		R4Col28	< 1.40Ω	
R3Col29	< 1.40Ω		R4Col29	< 1.40Ω	
R3Col30	< 1.40Ω		R4Col30	< 1.40Ω	
R3Col31	< 1.40Ω		R4Col31	< 1.40Ω	
R3Col32	< 1.40Ω		R4Col32	< 1.40Ω	

$\begin{aligned} & \text { Row/Col } \\ & \text { Path } \end{aligned}$	Path Resistance ${ }^{*}$	Measured Value	$\begin{aligned} & \text { Row/Col } \\ & \text { Path } \end{aligned}$	Path Resistance ${ }^{*}$	Measured Value
Row 5			Row 6		
R5Col1	< 1.40Ω		R6Col1	<1.40 Ω	
R5Col2	< 1.40Ω		R6Col2	< 1.40Ω	
R5Col3	< 1.40Ω		R6Col3	< 1.40Ω	
R5Col4	< 1.40Ω		R6Col4	< 1.40Ω	
R5Col5	< 1.40Ω		R6Col5	< 1.40Ω	
R5Col6	< 1.40Ω		R6Col6	< 1.40Ω	
R5Col7	< 1.40Ω		R6Col7	< 1.40Ω	
R5Col8	< 1.40Ω		R6Col8	< 1.40Ω	
R5Col9	$<1.40 \Omega$		R6Col9	$<1.40 \Omega$	
R5Col10	< 1.40Ω		R6Col10	< 1.40Ω	
R5Col11	< 1.40Ω		R6Col11	< 1.40Ω	
R5Col12	< 1.40Ω		R6Col12	< 1.40Ω	
R5Col13	< 1.40Ω		R6Col13	< 1.40Ω	
R5Col14	< 1.40Ω		R6Col14	< 1.40Ω	
R5Col15	< 1.40Ω		R6Col15	< 1.40Ω	
R5Col16	< 1.40Ω		R6Col16	< 1.40Ω	
R5Col17	< 1.40Ω		R6Col17	< 1.40Ω	
R5Col18	< 1.40Ω		R6Col18	< 1.40Ω	
R5Col19	< 1.40Ω		R6Col19	< 1.40Ω	
R5Col20	< 1.40Ω		R6Col20	< 1.40Ω	
R5Col21	< 1.40Ω		R6Col21	< 1.40Ω	
R5Col22	< 1.40Ω		R6Col22	< 1.40Ω	
R5Col23	< 1.40Ω		R6Col23	< 1.40Ω	
R5Col24	< 1.40Ω		R6Col24	< 1.40Ω	
R5Col25	< 1.40Ω		R6Col25	< 1.40Ω	
R5Col26	< 1.40Ω		R6Col26	< 1.40Ω	
R5Col27	< 1.40Ω		R6Col27	< 1.40Ω	
R5Col28	< 1.40Ω		R6Col28	< 1.40Ω	
R5Col29	< 1.40Ω		R6Col29	< 1.40Ω	
R5Col30	< 1.40Ω		R6Col30	< 1.40Ω	
R5Col31	< 1.40Ω		R6Col31	< 1.40Ω	
R5Col32	< 1.40Ω		R6Col32	< 1.40Ω	

Row/Col Path	Path Resistance*	Measured Value	Row/Col Path	Path Resistance*	Measured Value
Row 7			Row 8		
R7Col1	< 1.40Ω		R8Col1	< 1.40Ω	
R7Col2	$<1.40 \Omega$		R8Col2	< 1.40Ω	
R7Col3	< 1.40Ω		R8Col3	< 1.40Ω	
R7Col4	< 1.40Ω		R8Col4	< 1.40Ω	
R7Col5	< 1.40Ω		R8Col5	< 1.40Ω	
R7Col6	<1.40 Ω		R8Col6	< 1.40Ω	
R7Col7	$<1.40 \Omega$		R8Col7	$<1.40 \Omega$	
R7Col8	< 1.40Ω		R8Col8	< 1.40Ω	
R7Col9	< 1.40Ω		R8Col9	< 1.40Ω	
R7Col10	< 1.40Ω		R8Col10	< 1.40Ω	
R7Col11	< 1.40Ω		R8Col11	< 1.40Ω	
R7Col12	<1.40 Ω		R8Col12	< 1.40Ω	
R7Col13	< 1.40Ω		R8Col13	< 1.40Ω	
R7Col14	< 1.40Ω		R8Col14	< 1.40Ω	
R7Col15	< 1.40Ω		R8Col15	< 1.40Ω	
R7Col16	<1.40 Ω		R8Col16	< 1.40Ω	
R7Col17	< 1.40Ω		R8Col17	< 1.40Ω	
R7Col18	$<1.40 \Omega$		R8Col18	< 1.40Ω	
R7Col19	< 1.40Ω		R8Col19	< 1.40Ω	
R7Col20	< 1.40Ω		R8Col20	< 1.40Ω	
R7Col21	< 1.40Ω		R8Col21	< 1.40Ω	
R7Col22	<1.40 Ω		R8Col22	< 1.40Ω	
R7Col23	< 1.40Ω		R8Col23	< 1.40Ω	
R7Col24	<1.40 Ω		R8Col24	< 1.40Ω	
R7Col25	< 1.40Ω		R8Col25	< 1.40Ω	
R7Col26	$<1.40 \Omega$		R8Col26	< 1.40Ω	
R7Col27	< 1.40Ω		R8Col27	< 1.40Ω	
R7Col28	< 1.40Ω		R8Col28	$<1.40 \Omega$	
R7Col29	< 1.40Ω		R8Col29	< 1.40Ω	
R7Col30	< 1.40Ω		R8Col30	< 1.40Ω	
R7Col31	< 1.40Ω		R8Col31	< 1.40Ω	
R7Col32	< 1.40Ω		R8Col32	< 1.40Ω	

[^4]
M9122A Schematic

Figure 33 M9122A Schematic (Rows 1 and 2, motherboard) numbers in parenthesis are front panel connector pin numbers

Figure 34 M9122A Schematic (Rows 3 and 4, motherboard and daughter board)
numbers in parenthesis are front panel connector pin numbers

Figure 35 M9122A Schematic (Rows 5 and 6, daughter board)
numbers in parenthesis are front panel connector pin numbers

Figure 36 M9122A Schematic (Rows 7 and 8, daughter board) numbers in parenthesis are front panel connector pin numbers

M9122A PC Board Layout

Figure 37 M9122A PC Motherboard Layout

NOTE

Relays 258 and 259 on the PC board, are used for internal Keysight testing only.

Figure 38 M9122A PC Daughter board Layout

Figure 39 M9122A Backside of PC Motherboard (solder side) showing relay locations

Figure 40 M9122A Backside of PC daughter board (solder side) showing relay locations

Index

```
C
channel numbers, }1
Characteristics, module, }
Connection Expert, }1
Contact resistance, relay, 18
D
Daughter Boards
    replacement part
        numbers, }2
E
Electrostatic discharge
    precautions, }
End-of-Life Detection,18
ESD,9
F
Functional verification, 15
Functional Verification Test
    Record
    M9101A, }2
    M9102A, }3
    M9103A, 43
    M9120A, 51
    M9121A, }6
    M9122A, 73
Functional verification test
    record, 17
|
IO Libraries Connection
    Expert, }1
M
M9101A
    connector and pinout, 23
    contact resistance test, 24
    default switch path, }2
    functional verification test
        record, 25
    PC board layout, 27
    replacement relays, }2
    schematic, 26
M9102A
    channel to relay numbers, 33
```

connector and pinout, 31
contact resistance test, 32
default switch path, 30
functional verification test record, 34
PC board layout, 37
replacement relays, 30, 40
schematic, 36
M9103
functional verification test record, 43
M9103A
connector and pinout, 41
contact resistance test, 42
default switch path, 40
PC Board Layout, 46
schematic, 45
M9120A
connector and pinout, 49
contact resistance test, 51
default switch path, 48
functional verification test record, 51
PC board layout, 56
replacement relays, 48
schematic, 54
M9121A
connector and pinout, 59
contact resistance test, 60
default switch path, 58
functional verification test record, 61
PC board layout, 68
replacement relays, 58
schematic, 64
M9122A
connector and pinout, 71
contact resistance test, 72
default switch path, 70
functional verification test record, 73
PC board layout, 81
replacement relays, 70
schematic, 77
Module Characteristics, 8

N

Number of relay operations, 18
0
Operational Verification, 11

P

Path resistance, 17
PC, 81
PC board layout
M9101A, 27
M9102A, 37
M9103A, 46
M9120A, 56
M9121A, 68
M9122A, 81
R
Recommended Test
Equipment, 15
Relay contact resistance, 18
Relay Life, 17
Relay Load, 17
Relay Path Resistance
Measurements, 16
Relay replacement, 18
Relays
replacement, 20
Replacement daughter board part numbers, 20
relays, 20
Resistance measurements, 16

S

Safety Considerations, 9
Schematic
M9101A, 26
M9102A, 36
M9103A, 45
M9120A, 54
M9121A, 64
M9122A, 77
Stability of contact resistance, 18
Switching Frequency, 17

Index

T

Test Conditions, 15
Test equipment recommended, 15
Typical Path Resistances, 17

V

Verification
functional, 15 operational, 11

[^0]: * Functional test limit

[^1]: * Functional test limit

[^2]: * Functional test limit

[^3]: * Functional test limit

[^4]: * Functional test limit

