
Keysight M9241/42/43A PXIe
Oscilloscopes

IVI Programming
Guide

2 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

Notices
© Keysight Technologies, Inc. 2017

No part of this manual may be reproduced in
any form or by any means (including
electronic storage and retrieval or
translation into a foreign language) without
prior agreement and written consent from
Keysight Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number
M9240-97003

Ed ition
First edition, January 2017

Printed in Malaysia

Published by:
Keysight Technologies, Inc.
1900 Garden of the Gods Road
Colorado Springs, CO 80907 USA

Print History
M9240-97003, January 2017

Warranty
The material contained in this document is
provided "as is," and is subject to being
changed, without notice, in future ed itions.
Further, to the maximum extent permitted
by appl icable law, Keysight d isclaims all
warranties, either express or implied, with
regard to this manual and any information
contained herein, includ ing but not l imited
to the implied warranties of
merchantabil ity and fitness for a particular
purpose. Keysight shall not be l iable for
errors or for incidental or consequential
damages in connection with the furnishing,
use, or performance of this document or of
any information contained herein. Should
Keysight and the user have a separate
written agreement with warranty terms
covering the material in this document that
confl ict with these terms, the warranty
terms in the separate agreement shall
control.

Technology License
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in
accordance with the terms of such license.

U.S. Government Rights
The Software is "commercial computer
software," as defined by Federal Acquisition
Regulation ("FAR") 2.101. Pursuant to FAR
12.212 and 27.405-3 and Department of
Defense FAR Supplement ("DFARS")
227.7202, the U.S. government acquires
commercial computer software under the
same terms by which the software is
customarily provided to the public.
Accordingly, Keysight provides the Software
to U.S. government customers under its
standard commercial license, which is
embodied in its End User License Agreement
(EULA), a copy of which can be found at
www.keysight.com/find/sweula. The
license set forth in the EULA represents the
exclusive authority by which the U.S.
government may use, modify, distribute, or
disclose the Software. The EULA and the
license set forth therein, does not require or
permit, among other things, that Keysight:
(1) Furnish technical information related to
commercial computer software or
commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish to,
or otherwise provide, the government rights
in excess of these rights customarily
provided to the public to use, modify,
reproduce, release, perform, display, or
disclose commercial computer software or
commercial computer software
documentation. No additional government
requirements beyond those set forth in the
EULA shall apply, except to the extent that
those terms, rights, or licenses are explicitly
required from all providers of commercial
computer software pursuant to the FAR and
the DFARS and are set forth specifically in
writing elsewhere in the EULA. Keysight
shall be under no obligation to update,
revise or otherwise modify the Software.
With respect to any technical data as
defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS 227.7102,
the U.S. government acquires no greater

than Limited Rights as defined in FAR 27.401
or DFAR 227.7103-5 (c), as applicable in any
technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the l ike that, if not correctly
performed or adhered to, could
resul t in personal injury or death.
Do not proceed beyond a WARNING
notice until the ind icated
conditions are fully understood and
met.

http://www.keysight.com/find/sweula

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 3

Contents

1 What You Will Learn in This Programming Guide

Related Websites / 6

Related Documentation / 7

Overall Process Flow / 8

2 Installing Hardware, Software, and Licenses

3 APIs for the M9241/42/43A PXIe Oscilloscopes

IVI Compliant or IVI Class Compliant / 13

IVI Driver Types / 14

IVI Driver Hierarchy / 16

Class-Complaint and Instrument-Specific Hierarchies for the M924xA / 17

Naming Conventions Used to Program IVI Drivers / 19
General IVI Naming Conventions / 19
IVI-COM Naming Conventions / 19

4 Creating a Project with IVI-COM Using C-Sharp

Step 1 - Create a Console Application / 22

Step 2 - Add References / 23

Step 3 - Add "using" Statements / 25

Step 4 - Create Instance of the IVI-COM Driver / 26

Step 5 - Initialize the Driver Instance / 27
Resource Names / 27
Initialize() Parameters / 29
Initialize() Options / 30

Step 6 - Write the Program Steps / 33

Step 7 - Close the Driver / 34

Step 8 - Building and Running a Complete Program Using Visual C-Sharp / 35
Example Program - Code Structure / 35
Example Program - Full Code Listing / 36

4 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

Additional Example Programs / 39

5 Creating a Project with IVI-COM Using Python

6 References

7 Glossary

Index

5

Keysight M9241/42/43A PXIe Oscilloscopes
IVI Programming Guide

1 What You Will Learn in This
Programming Guide

Related Websites / 6
Related Documentation / 7
Overall Process Flow / 8

This programming guide is intended for individuals who write and run programs to
control test-and-measurement instruments. Specifically, in this programming
guide, you will learn how to use Visual Studio 2010 with the .NET Framework to
write IVI-COM Console Applications in Visual C#. Knowledge of Visual Studio 2010
with the .NET Framework and knowledge of the programming syntax for Visual C#
is required.

Our basic user programming model uses the IVI-COM driver directly and allows
customer code to:

• Access the IVI-COM driver at the lowest level

• Control the Keysight M9241/42/43A PXIe oscilloscopes

This guide describes:

• Example Program: How to Print Driver Properties, Check for Errors, and Close
Driver Sessions

Additional example programs show how to perform waveform acquisitions.

6 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

1 What You Will Learn in This Programming Guide

Related Websites

• Keysight Technologies PXI and AXIe Modular Products

• Keysight M9241/42/43A PXIe Oscilloscopes

• Keysight Technologies

• IVI Drivers & Components Downloads

• Keysight I/O Libraries Suite

• GPIB, USB, & Instrument Control Products

• Keysight VEE Pro

• Technical Support, Manuals, & Downloads

• Contact Keysight Test & Measurement

• IVI Foundation - Usage Guides, Specifications, Shared Components Downloads

• MSDN Online

http://www.keysight.com/find/Modular
http://www.keysight.com/products/M9241A
http://www.keysight.com/
http://www.keysight.com/find/ivi
http://www.keysight.com/find/iosuite
http://www.keysight.com/find/io
http://www.keysight.com/find/vee
http://www.keysight.com/find/support
http://www.keysight.com/find/contactus
http://www.ivifoundation.org/
http://msdn.microsoft.com/

What You Will Learn in This Programming Guide 1

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 7

Related Documentation

To access documentation related to the Keysight M9241/42/43A PXIe
oscilloscope modules and the Keysight M9240A AutoProbe power module, use
one of the following methods:

• The related documents are available on the product CD:

• To find the latest versions of the user documentation, go to
www.keysight.com/manuals/M9241A.

See Also The data sheet introduces the product and provides full product specifications.
You can find the data sheet at: www.keysight.com/products/M9241A

The Keysight M9241/42/43A PXIe Oscilloscopes and M9240A AutoProbe Power
Module Security Guide is available at www.keysight.com/find/security.

Document Description File name Format

Startup Guide Includes procedures to help you to
unpack, inspect, install (hardware
and software), verify operation, and
make a basic measurement.

M924x_StartupGuide.pdf PDF

Soft Front Panel
(SFP) User's
Guide

Shows how to use the InfiniiVision
M9241/42/43A PXIe oscilloscope's
Soft Front Panel (SFP) user
interface.

M924x_SFP_Users_Guide.pdf PDF

M924x_SFP_Users_Guide.chm CHM (Microsoft
Help Format)

SCPI
Programmer's
Guide

Shows how to program the
M9241/42/43A PXIe oscilloscopes
using SCPI commands.

M924x_SCPI_Programmers_Guide.chm CHM (Microsoft
Help Format)

M924x_SCPI_Programmers_Guide.pdf PDF

IVI Programming
Guide (this
manual)

Shows you how to use Visual Studio
2010 with the .NET Framework to
write IVI-COM Console Applications
in Visual C#.

M924x_IVI_ProgrammingGuide.pdf PDF

IVI Driver
reference (help
system)

Provides detailed documentation of
the IVI-COM and IVI-C driver API
functions, as well as information to
help you get started with using the
IVI drivers in your application
development environment.

AgInfiniiVision.chm CHM (Microsoft
Help Format)

LabVIEW Driver
Reference

Provides detailed documentation of
the LabVIEW G Driver API functions.

KtM924x_LabVIEW_Help.chm CHM (Microsoft
Help Format)

http://www.keysight.com/support/M9241A
http://www.keysight.com/products/M9241A
http://www.keysight.com/find/security

8 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

1 What You Will Learn in This Programming Guide

Overall Process Flow

Perform the following steps:

1 Write source code using Microsoft Visual Studio 2010 with .NET Visual C#
running on Windows 7.

2 Compile source code using the .NET Framework Library.

3 Produce an Assembly.exe file – this file can run directly from Microsoft
Windows without the need for any other programs.

• When using the Visual Studio Integrated Development Environment (IDE),
the Console Applications you write are stored in conceptual containers
called Solutions and Projects.

• You can view and access Solutions and Projects using the Solution Explorer
window (View > Solution Explorer).

9

Keysight M9241/42/43A PXIe Oscilloscopes
IVI Programming Guide

2 Installing Hardware,
Software, and Licenses

Perform the following steps:

1 Unpack and inspect all hardware.

2 Verify the shipment contents.

3 Install the software. Note the following order when installing software.

a Install Microsoft Visual Studio 2010 with .NET Visual C# running on
Windows 7.

You can also use a free version of Visual Studio Express 2010 tools from:
http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010
-express

The following steps, defined in the Keysight M9241/42/43A PXIe
Oscilloscopes and M9240A AutoProbe Power Module Startup Guide, but
repeated here must be completed before programmatically controlling the
M9241/42/43A PXIe oscilloscope hardware with their IVI drivers.

b Install Keysight IO Libraries Suite (IOLS), version 17.2 or later; this
installation includes Keysight Connection Expert.

c Install the M9241/42/43A PXIe oscilloscope software version 7.0 or later;
this installation includes the AgInfiniiVision IVI driver version 2.2.8.0 or later.

d Install the M9018A PXIe Chassis driver software, version 1.3.443.1 or later.

Driver software includes all IVI-COM, IVI-C, and LabVIEW G Drivers along
with Soft Front Panel (SFP) programs and documentation. All of these items
may be downloaded from the Keysight product websites:

• http://www.keysight.com/find/iosuite > Select Technical Support >
Select the Drivers, Firmware & Software tab > Download the Keysight IO
Libraries Suite Recommended

• http://www.keysight.com/support/M9241A > Select Technical Support
> Select the Drivers, Firmware & Software tab > Download the Instrument
Driver.

http://www.microsoft.com/visualstudio/eng/products/visual-studio-2010-express
http://www.keysight.com/find/iosuite
http://www.keysight.com/support/M9241A

10 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

2 Installing Hardware, Software, and Licenses

• http://www.keysight.com/find/m9018a > Select Technical Support >
Select the Drivers, Firmware & Software tab > Download the Instrument
Driver.

• http://www.keysight.com/find/ivi - download other installers for
Keysight IVI-COM drivers

4 Install the hardware modules and make cable connections.

5 Verify operation of the modules (or the system that the modules create).

Once the software and hardware are installed, and after Self-Test has been
performed, the M924xA PXIe oscilloscopes are ready to be programmatically
controlled.

NOTE Before programming or making measurements, conduct a Self-Test on each M924xA PXIe
oscilloscope to make sure there are no problems with the modules, cabling, or backplane
trigger mapping.

http://www.keysight.com/find/m9018a
http://www.keysight.com/find/ivi

11

Keysight M9241/42/43A PXIe Oscilloscopes
IVI Programming Guide

3 APIs for the M9241/42/43A
PXIe Oscilloscopes

IVI Compliant or IVI Class Compliant / 13
IVI Driver Types / 14
IVI Driver Hierarchy / 16
Class-Complaint and Instrument-Specific Hierarchies for the M924xA / 17
Naming Conventions Used to Program IVI Drivers / 19

The following IVI driver terminology may be used when describing the Application
Programming Interfaces (APIs) for the M9241/42/43A PXIe oscilloscopes.

IVI [Interchangeable Virtual Instruments] - a standard instrument driver model
defined by the IVI Foundation that enables engineers to exchange instruments
made by different manufacturers without rewriting their code.
www.ivifoundation.org

IVI Instrument
Classes (Defined

by the IVI
Foundation)

Currently, there are 13 IVI Instrument Classes defined by the IVI Foundation. The
M9241/42/43A PXIe oscilloscope belongs to the Oscilloscope IVI Instrument Class
and are therefore is described as a "Class" module.

• DC Power Supply

• AC Power Supply

• DMM

• Function Generator

• Oscilloscope

• Power Meter

• RF Signal Generator

• Spectrum Analyzer

• Switch

• Upconverter

• Downconverter

• Digitizer

http://www.ivifoundation.org

12 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

3 APIs for the M9241/42/43A PXIe Oscilloscopes

• Counter/Timer

APIs for the M9241/42/43A PXIe Oscilloscopes 3

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 13

IVI Compliant or IVI Class Compliant

The M9241/42/43A PXIe oscilloscopes driver is IVI Compliant and IVI Class
Compliant because it belongs to one of the 13 IVI Instrument Classes defined by
the IVI Foundation.

• IVI Compliant – means that the IVI driver follows architectural specifications for
these categories:

• Installation

• Inherent Capabilities

• Cross Class Capabilities

• Style

• Custom Instrument API

• IVI Class Compliant – means that the IVI driver implements one of the 13 IVI
Instrument Classes

• If an instrument is IVI Class Compliant, it is also IVI Compliant

• Provides one of the 13 IVI Instrument Class APIs in addition to a Custom API

• Custom API may be omitted (unusual)

• Simplifies exchanging instruments

14 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

3 APIs for the M9241/42/43A PXIe Oscilloscopes

IVI Driver Types

• IVI Driver

• Implements the Inherent Capabilities Specification

• Complies with all of the architecture specifications

• May or may not comply with one of the 13 IVI Instrument Classes

• Is either an IVI Specific Driver or an IVI Class Driver

• IVI Class Driver

• Is an IVI Driver needed only for interchangeability in IVI-C environments

• The IVI Class may be IVI-defined or customer-defined

• IVI Specific Driver

• Is an IVI Driver that is written for a particular instrument such as the
M9241/42/43A PXIe oscilloscopes

• IVI Class-Compliant Specific Driver

• IVI Specific Driver that complies with one (or more) of the IVI defined
class specifications

• Used when hardware independence is desired

• IVI Custom Specific Driver

IVI Driver

IVI Specific
Driver

IVI Class-Compliant
Specific Driver

13 IVI Instrument
Classes defined by
the IVI Foundation:

- DC Power Supply
- AC Power Supply
- DMM
- Function Generator
- Oscilloscope
- RF Signal Generator
- Spectrum Analyzer
- Switch
- Upconverter
- Downconverter
- Digitizer
- Counter/Timer

IVI Custom
Specific Driver

IVI Class
Driver

APIs for the M9241/42/43A PXIe Oscilloscopes 3

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 15

• Is an IVI Specific Driver that is not compliant with any one of the 13 IVI
defined class specifications

• Not interchangeable

16 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

3 APIs for the M9241/42/43A PXIe Oscilloscopes

IVI Driver Hierarchy

When writing programs, you will be using the interfaces (APIs) available to the
IVI-COM driver.

• The core of every IVI-COM driver is a single object with many interfaces.

• These interfaces are organized into two hierarchies: Class-Compliant Hierarchy
and Instrument-Specific Hierarchy – and both include the IIviDriver interfaces.

• Class-Compliant Hierarchy - Because the M9241/42/43A PXIe oscilloscopes
belong to one of the 13 IVI Classes, there is a Class-Compliant Hierarchy in
its IVI Driver.

• The M9241/42/43A PXIe oscilloscope's class-compliant hierarchy has
IIviScope at the root (where IviScope is the driver name).

• IIviScope is the root interface and contains references to child
interfaces, which in turn contain references to other child interfaces.
Collectively, these interfaces define the Class-Compliant Hierarchy.

• Instrument-Specific Hierarchy

• The M9241/42/43A PXIe oscilloscope's instrument-specific hierarchy has
IAgInfiniiVision7 at the root (where AgInfiniiVision is the driver name).

• IAgInfiniiVision7 is the root interface and contains references to child
interfaces, which in turn contain references to other child interfaces.
Collectively, these interfaces define the Instrument-Specific
Hierarchy.

• The IIviDriver interfaces are incorporated into both hierarchies:
Class-Compliant Hierarchy and Instrument-Specific Hierarchy.

The IIviDriver is the root interface for IVI Inherent Capabilities which are what
the IVI Foundation has established as a set of functions and attributes that
all IVI drivers must include – irrespective of which IVI instrument class the
driver supports. These common functions and attributes are called IVI
inherent capabilities and they are documented in IVI-3.2 – Inherent
Capabilities Specification. Drivers that do not support any IVI instrument
class must still include these IVI inherent capabilities.

APIs for the M9241/42/43A PXIe Oscilloscopes 3

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 17

Class-Complaint and Instrument-Specific Hierarchies for the M924xA

The following table lists the class-compliant and instrument-specific hierarchy
interfaces for the M9241/42/43A PXIe oscilloscopes.

When Using Visual
Studio

To view the interfaces available in the M924xA PXIe oscilloscope driver, right-click
AgInfiniiVisionLib library file, in the References folder, from the Solution Explorer
window and select View in Object Browser.

IVI Class-Compliant Hierarchy

IviScope is the driver name

IIviScope is the root interface

Keysight M924xA PXIe Oscilloscope
Instrument-Specific Hierarchy

AgInfiniiVision is the driver name

IAgInfiniiVision7 is the root interface

18 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

3 APIs for the M9241/42/43A PXIe Oscilloscopes

APIs for the M9241/42/43A PXIe Oscilloscopes 3

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 19

Naming Conventions Used to Program IVI Drivers

General IVI Naming Conventions

• All instrument class names start with "Ivi"

• Example: IviScope, IviDmm

• Function names

• One or more words use PascalCasing

• First word should be a verb

IVI-COM Naming Conventions

• Interface naming

• Class compliant: Starts with "IIvi"

• I<ClassName>

• Example: IIviScope, IIviDmm

• Sub-interfaces add words to the base name that match the C hierarchy as close
as possible

• Examples: IIviFgenArbitrary, IIviFgenArbitraryWaveform

• Defined values

• Enumerations and enum values are used to represent discrete values in
IVI-COM

• <ClassName><descriptive words>Enum

• Example: IviScopeTriggerCouplingEnum

• Enum values do not end in "Enum" but use the last word to differentiate

• Examples: IviScopeTriggerCouplingAC and IviScopeTriggerCouplingDC

20 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

3 APIs for the M9241/42/43A PXIe Oscilloscopes

21

Keysight M9241/42/43A PXIe Oscilloscopes
IVI Programming Guide

4 Creating a Project with
IVI-COM Using C-Sharp

Step 1 - Create a Console Application / 22
Step 2 - Add References / 23
Step 3 - Add "using" Statements / 25
Step 4 - Create Instance of the IVI-COM Driver / 26
Step 5 - Initialize the Driver Instance / 27
Step 6 - Write the Program Steps / 33
Step 7 - Close the Driver / 34
Step 8 - Building and Running a Complete Program Using Visual C-Sharp / 35
Additional Example Programs / 39

This tutorial walks through the various steps required to create a console
application using Visual Studio and C#. It demonstrates how to instantiate a driver
instance, set the resource name and various initialization values, initialize the
driver instance, print various driver properties to a console, check drivers for
errors, report errors if they occur, and close the driver.

At the end of this tutorial is a complete example program that shows what the
console application looks like if you follow all of these steps.

22 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

Step 1 - Create a Console Application

1 Launch Visual Studio and create a new Console Application in Visual C# by
selecting: File > New > Project and select a Visual C#, Windows, Console
Application.

2 Enter "InfiniiVisionScopeProperties" as the Name of the project and click OK.

NOTE Projects that use a Console Application do not show a Graphical User Interface (GUI) display.

NOTE When you select New, Visual Studio will create an empty "Program.cs" file that includes some
necessary code, including using statements. This code is required, so do not delete it.

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 23

Step 2 - Add References

In order to access the M924xA PXIe oscilloscope driver interfaces, references to
their drivers (DLL) must be created.

1 For this step, Solution Explorer must be visible (View > Solution Explorer) and the
"Program.cs" editor window must be visible; select the Program.cs tab to bring
it to the front view.

2 In Solution Explorer, right-click on References and select Add Reference....

3 From the Add Reference dialog box, select the COM tab.

4 Click on any of the type libraries under the "Component Name" heading and
enter the letter "I".(All IVI drivers begin with IVI so this will move down the list of
type libraries that begin with "I".)

Also, the TypeLib Version that appears will depend on the version of the IVI
driver that is installed. The version numbers change over time and typically
increase as new drivers are released.

If the TypeLib Version that is displayed on your system is higher than the ones
shown in this example, your system simply has newer versions – newer versions
may have additional commands available.

To get the IVI drivers to appear in this list, you must close this Add Reference
dialog, install the IVI drivers, and come back to this section and repeat "Step 2
- Add References" on page 23.

NOTE If you have not installed the IVI driver for the M924xA PXIe oscilloscope products (as listed in
Chapter 2, “Installing Hardware, Software, and Licenses,” starting on page 9), their IVI
drivers will not appear in this list.

24 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

5 Scroll to IVI section and select the following type library. Then click OK.

• IVI AgInfiniiVision 2.2 Type Library

6 These selected type libraries appear under the References node, in Solution
Explorer, as:

To allow your program to access the IVI drivers without specifying full path
names of each interface or enum, you need to add using statements to your
program.

NOTE When any of the references for the AgInfiniiVision are added, the IVIDriver 1.0 Type Library is
also automatically added. This is visible as IviDriverLib under the project Reference; this
reference houses the interface definitions for IVI inherent capabilities which are located in the
file IviDriverTypeLib.dll (dynamically linked library).

NOTE The program looks same as before you added the References, with the difference that the IVI
drivers that are referenced are now available for use.

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 25

Step 3 - Add "using" Statements

All data types (interfaces and enums) are contained within namespaces. (A
namespace is a hierarchical naming scheme for grouping types into logical
categories of related functionality. Design tools, such as Visual Studio, can use
namespaces which makes it easier to browse and reference types in your code.)
The C# "using" statement allows the type name to be used directly. Without the
"using" statement, the complete namespace-qualified name must be used.

To allow your program to access the IVI driver without having to type the full path
of each interface or enum, type the following using statements immediately below
the other using statements.

These using statements should be added to your program:

using Ivi.Driver.Interop;
using Agilent.AgInfiniiVision.Interop;

NOTE You can create sections of code in your program that can be expanded and collapsed by
surrounding the code with #region and #endregion preprocessing directives. Select – or +
symbol to collapse or expand the region.

Collapse
and
Expand

26 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

Step 4 - Create Instance of the IVI-COM Driver

There are two ways to instantiate (create an instance of) the IVI-COM drivers:

• COM Session Factory

• Direct Instantiation

Because the InfiniiVision oscilloscopes are considered Class modules (because
they belong to one of the 13 IVI Classes), the COM Session Factory can be used to
create instances of their IVI-COM drivers.

// Create an instance of the session factory
IIviSessionFactory factory = new IviSessionFactoryClass();

// Ask the session factory to create an instance of
// the appropriate driver based on a logical name
IIviScope iviscope = (IIviScope)factory.CreateDriver("MyLogicalName");

When direct instantiation of the InfiniiVision oscilloscope driver is used:

// Instantiate the driver class directly
AgInfiniiVision driver = new AgInfiniiVision();

The IVI-COM drivers may not be interchangeable with other oscilloscope modules.

The new operator is used in C# to create an instance of the driver.

// Create driver instance
AgInfiniiVision driver = new AgInfiniiVision();

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 27

Step 5 - Initialize the Driver Instance

The Initialize() method is required when using any IVI driver. It establishes a
communication link (an "I/O session") with an instrument and it must be called
before the program can do anything with an instrument or work in simulation
mode.

The Initialize() method has a number of options that can be defined. In this
example, we prepare the Initialize() method by defining only a few of the
parameters, then we call the Initialize() method with these parameters:

Resource Names

• If you are using Simulate Mode, you can set the Resource Name address string
to:

string resourceDesc = "%";

• If you are actually establishing a communication link (an "I/O session") with an
instrument, you need to determine the Resource Name address string (VISA
address string) that is needed.You can use an IO application such as
Agilent/Keysight Connection Expert, Agilent/Keysight Command Expert,
National Instruments Measurement and Automation Explorer (MAX), or you can
use the Keysight product's Soft Front Panel (SFP) to get the physical Resource
Name string.

Using the Keysight M924x InfiniiVision SFP, you might get the following
Resource Name address strings.

28 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

When running the remote program on the PXIe chassis controller PC, you
could, for example, use the following resource string.

string resourceDesc = "PXI9::0::0::INSTR";

When running the remote program on some other controller PC on the
network, you need to find the "HiSLIP Address" Resource Name address string.
To do this:

a In the the Keysight M924x InfiniiVision SFP, select one of the InfiniiVision
modules and click its Show Front Panel icon.

b In the oscilloscope module's Front Panel graphical user interface, choose
(Menu) > Util ities > I/O Menu.

c In the dialog box that appears, take note of the HiSLIP address.

Module Name M9241A PXIe
Oscilloscope

M9243A PXIe
Oscilloscope

M9242A PXIe
Oscilloscope

Slot Number 6 7 9

VISA Address PXI13::0::0::INSTR PXI14::0::0::INSTR PXI9::0::0::INSTR

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 29

So, when running the remote program on a controller PC other than the PXIe
chassis controller, you could, for example, use the following resource string.

string resourceDesc = "TCPIP::10.112.94.136::hislip9-0.0::INSTR";

You could also include the chassis controller host name in place of the IP
address (10.112.94.136) in the "HiSLIP Address" string.

This resource string is similar to one you would use for a standalone InfiniiVision
oscilloscope.

string resourceDesc = "TCPIP0::141.121.230.115::hislip0::INSTR";

PXI and HiSLIP
Address

Differences

The PXI interface does not support sending the <END> message and depends on a
new line <NL> to terminate a command or query (similar to a telnet socket port on
a benchtop oscilloscope). You may run into this issue when using raw binary writes
over the PXI interface. For example:

AgInfiniiVision driver = new AgInfiniiVision();

string initOptions = "QueryInstrStatus=true, Simulate=false,
DriverSetup= Model=, Trace=false, TraceName=c:\\temp\\traceOut";

bool idquery = true;
bool reset = false;

string pxiAddr = "PXI35::0::0::INSTR";
string hislipAddr = "TCPIP0::localhost::hislip35-0.0::INSTR";

driver.Initialize(pxiAddr, idquery, reset, initOptions);
…
…
…
byte[] cmd = Encoding.ASCII.GetBytes("*IDN?\n");
driver.System4.DirectIO.IO.Write(cmd, cmd.Length);

When using a HiSLIP address, the "\n" is not required. However, when using the
PXI address, the "\n" is required.

Initialize() Parameters

// Define driver Initialize options
string initOptions = "QueryInstrStatus=true, Simulate=false, DriverSetup
=

NOTE In order to control a M924x InfiniiVision oscilloscope module, its Front Panel interface must be
running.

NOTE Although the Initialize() method has a number of options that can be defined (see
Initialize Options below), we are showing this example with a minimum set of options to help
minimize complexity.

30 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

Model=, Trace=false, TraceName=c:\\temp\\traceOut";

bool idquery = true;
bool reset = false;

// Initialize the driver.
driver.Initialize(resourceDesc, idquery, reset, initOptions);
Console.WriteLine("Driver Initialized");

The following picture shows how IntelliSense is invoked by simply rolling the
cursor over the word "Initialize".

Initialize() Options

The following table describes options that are most commonly used with the
Initialize() method.

NOTE One of the key advantages of using C# in the Microsoft Visual Studio Integrated Development
Environment (IDE) is IntelliSense. IntelliSense is a form of auto-completion for variable names
and functions and a convenient way to access parameter lists and ensure correct syntax. This
feature also enhances software development by reducing the amount of keyboard input
required.

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 31

Property Type and Example Value Description of Property

string ResourceName =
"PXI[bus]::device[::function][::INSTR]";

string ResourceName =
"PXI13::0::0::INSTR;PXI14::0::0::INSTR;PXI15::0::
0::INSTR;PXI16::0::0::INSTR";

ResourceName – The driver is typically
initialized using a physical resource name
descriptor, often a VISA resource descriptor.

See the procedure in the "Resource Names"
on page 27 section.

bool IdQuery = true; Setting the ID query to false prevents the driver
from verifying that the connected instrument is
the one the driver was written for.

If IdQuery is set to true, this will query the
instrument model and fail initialization if the
model is not supported by the driver.

bool Reset = true; Setting Reset to true instructs the driver to
initially reset the instrument.

32 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

If these drivers were installed, additional information can be found under
Initializing the IVI-COM Driver from the following:

AgInfiniiVision IVI
Driver Reference

Start > All Programs > Keysight Instrument Drivers > IVI-COM-C AgInfiniiVision 2.2.3
Oscilloscope (Open driver root folder)

In the driver root folder, double-click the "AgInfiniiVision.chm" file to open the
driver reference.

string OptionString = "QueryInstrStatus=true,
Simulate=true, DriverSetup= Trace=false";

OptionString - Setup the following initialization
options:

• QueryInstrStatus=true (Specifies whether the
IVI specific driver queries the instrument
status at the end of each user operation.)

• Simulate=true (Setting Simulate to true
instructs the driver to not attempt to connect
to a physical instrument, but use a simulation
of the instrument instead.)

• Cache=false (Specifies whether or not to
cache the value of properties.)

• InterchangeCheck=false (Specifies whether
the IVI specific driver performs
interchangeability checking.)

• RangeCheck=false (Specifies whether the IVI
specific driver validates attribute values and
function parameters.)

• RecordCoercions=false (Specifies whether
the IVI specific driver keeps a list of the value
coercions it makes for ViInt32 and ViReal64
attributes.)

DriverSetup= Trace=false"; • DriverSetup= (This is used to specify settings
that are supported by the driver, but not
defined by IVI. If the Options String parameter
(OptionString in this example) contains an
assignment for the Driver Setup attribute, the
Initialize function assumes that everything
following 'DriverSetup=' is part of the
assignment.)

• Model= (Instrument model to use during
simulation)

• Trace=false (If false, an output trace log of all
driver calls is not saved in an XML file.)

Property Type and Example Value Description of Property

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 33

Step 6 - Write the Program Steps

At this point, you can add program steps that use the driver instance to perform
tasks. For example:

// Print a few IIviDriverIdentity properties
Console.WriteLine("Identifier: {0}", driver.Identity.Identifier);
Console.WriteLine("Revision: {0}", driver.Identity.Revision);
Console.WriteLine("Vendor: {0}", driver.Identity.Vendor);
Console.WriteLine("Description: {0}", driver.Identity.Description);
Console.WriteLine("Model: {0}", driver.Identity.InstrumentModel);
Console.WriteLine("FirmwareRev: {0}", driver.Identity.InstrumentFirmware
Revision);
Console.WriteLine("Serial #: {0}", driver.System.SerialNumber);
Console.WriteLine("\nSimulate: {0}\
n", driver.DriverOperation.Simulate);

//Initiate the acquisition and return the acquired waveform data
System.Double[] WaveformArray = { 128, 64, 32, 16, 8, 4, 2, 1 };
System.Double InitialX = 10;
System.Double XIncrement = 5;
driver.Measurements.AutoSetup();

driver.Measurements.Initiate();

driver.Measurements.get_Item("Channel1").FetchWaveform(ref WaveformArray
, ref InitialX, ref XIncrement);
Console.WriteLine("\
nInitialX: {0} XIncrement: {1}", InitialX, XIncrement);

System.Int32 Points = WaveformArray.Length;
Console.Write("\n\nData Points: {0}\n\nWaveformArray: \n", Points);
if (Points > 100) Points = 100;
for (int i = 0; i < Points; i++)

Console.Write("{0}, ", WaveformArray[i]);
Console.WriteLine();

// Check instrument for errors
int errorNum = -1;
string errorMsg = null;
Console.WriteLine();
while (errorNum != 0)
{

driver.Utility.ErrorQuery(ref errorNum, ref errorMsg);
Console.WriteLine("ErrorQuery: {0}, {1}", errorNum, errorMsg);

}

34 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

Step 7 - Close the Driver

Calling Close() at the end of the program is required by the IVI specification
when using any IVI driver.

// Close the driver
if (driver != null && driver.Initialized)
{

driver.Close();
Console.WriteLine("Driver Closed");

}

// Write "Done" to console
Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

CAUTION Important! Close() may be the most commonly missed step when using an IVI driver.
Failing to do this could mean that system resources are not freed up and your program
may behave unexpectedly on subsequent executions.

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 35

Step 8 - Building and Running a Complete Program Using Visual
C-Sharp

Build your console application and run it to verify it works properly.

1 Open the solution file SolutionNameThatYouUsed.sln in Visual Studio 2010.

2 Set the appropriate platform target for your project.

• In many cases, the default platform target (Any CPU) is appropriate.

• However, if you are using a 64-bit PC (such as Windows 7) to build a .NET
application that uses a 32-bit IVI-COM driver, you may need to specify your
project's platform target as x86.

3 Choose Project > ProjectNameThatYouUsed Properties and select Build | Rebuild
Solution.

• Tip: You can also do the same thing from the Debug menu by clicking Start
Debugging or pressing the F5 key.

Example Program - Code Structure

After placing the example program statements in try/catch/finally blocks,
separating the driver declaration from instance creation, and adding #region and
#endregion preprocessor directives, you end up with an example program
structure that looks like:

36 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

Example Program - Full Code Listing

The example program full code listing looks like:

#region Specify using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Ivi.Driver.Interop;
using Agilent.AgInfiniiVision.Interop;
#endregion

namespace InfiniiVisionScopeProperties
{

class Program
{
static void Main(string[] args)
{

AgInfiniiVision driver = null;
try

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 37

{
// Create driver instance
driver = new AgInfiniiVision();

#region Initialize Driver Instances
// Define the resource name.
string resourceDesc = "TCPIP::10.112.94.136::hislip9-0.0::INSTR"

;

// Define driver Initialize options
string initOptions = "QueryInstrStatus=true, Simulate=false, Dri

verSetup= Model=, Trace=false, TraceName=c:\\temp\\traceOut";

bool idquery = true;
bool reset = false;

// Initialize the driver
driver.Initialize(resourceDesc, idquery, reset, initOptions);
Console.WriteLine("Driver Initialized");
#endregion

#region Print Driver Properties
// Print a few IIviDriverIdentity properties
Console.WriteLine("Identifier: {0}", driver.Identity.Identifier

);
Console.WriteLine("Revision: {0}", driver.Identity.Revision);
Console.WriteLine("Vendor: {0}", driver.Identity.Vendor);
Console.WriteLine("Description: {0}", driver.Identity.Descriptio

n);
Console.WriteLine("Model: {0}", driver.Identity.Instrument

Model);
Console.WriteLine("FirmwareRev: {0}", driver.Identity.Instrument

FirmwareRevision);
Console.WriteLine("Serial #: {0}", driver.System.SerialNumber

);
Console.WriteLine("\nSimulate: {0}\

n", driver.DriverOperation.Simulate);
#endregion

#region Perform Tasks
//Initiate the acquisition and return the acquired waveform data
System.Double[] WaveformArray = { 128, 64, 32, 16, 8, 4, 2, 1 };
System.Double InitialX = 10;
System.Double XIncrement = 5;
driver.Measurements.AutoSetup();

driver.Measurements.Initiate();

driver.Measurements.get_Item("Channel1").FetchWaveform(ref Wavef
ormArray, ref InitialX, ref XIncrement);

Console.WriteLine("\
nInitialX: {0} XIncrement: {1}", InitialX, XIncrement);

System.Int32 Points = WaveformArray.Length;
Console.Write("\n\nData Points: {0}\n\nWaveformArray: \

n", Points);
if (Points > 100) Points = 100;

38 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

for (int i = 0; i < Points; i++)
Console.Write("{0}, ", WaveformArray[i]);

Console.WriteLine();
#endregion

#region Check for Errors
// Check instrument for errors
int errorNum = -1;
string errorMsg = null;
Console.WriteLine();
while (errorNum != 0)
{

driver.Utility.ErrorQuery(ref errorNum, ref errorMsg);
Console.WriteLine("ErrorQuery: {0}, {1}", errorNum, errorMsg);

}
#endregion

}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
}
finally
{

#region Close Driver Instances
// Close the driver
if (driver != null && driver.Initialized)
{

driver.Close();
Console.WriteLine("Driver Closed");

}
#endregion

}

// Write "Done" to console
Console.WriteLine("Done - Press Enter to Exit");
Console.ReadLine();

}
}

}

Creating a Project with IVI-COM Using C-Sharp 4

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 39

Additional Example Programs

Additional example programs can be found in: C:\Program Files (x86)\IVI
Foundation\IVI\Drivers\AgInfiniiVision\Examples

40 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

4 Creating a Project with IVI-COM Using C-Sharp

41

Keysight M9241/42/43A PXIe Oscilloscopes
IVI Programming Guide

5 Creating a Project with
IVI-COM Using Python

You can use the Python programming language with the "comtypes" package to
control Keysight oscilloscopes using the IVI-COM library.

The Python language and "comtypes" package can be downloaded from the web
at http://www.python.org/ and
http://starship.python.net/crew/theller/comtypes/, respectively.

To run this example with Python and "comtypes":

1 Cut-and-paste the code that follows into a file named "example.py".

2 Edit the program to use the VISA address of your oscilloscope.

3 If "python.exe" can be found via your PATH environment variable, open a
Command Prompt window; then, change to the folder that contains the
"example.py" file, and enter:

python example.py

#
Oscilloscope IVI-COM instrument-specific AgInfiniiVision
example in Python using "comtypes"

This program illustrates a few commonly used programming
features of your Keysight oscilloscope.

Import Python modules.

import sys
import array

from comtypes.client import GetModule
from comtypes.client import CreateObject

Run GetModule once to generate comtypes.gen.AgInfiniiVisionLib
if not hasattr(sys, "frozen"):
GetModule("C:\Program Files (x86)\IVI Foundation\IVI\Bin\
AgInfiniiVision.dll")

http://www.python.org/
http://starship.python.net/crew/theller/comtypes/

42 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

5 Creating a Project with IVI-COM Using Python

from comtypes.gen import AgInfiniiVisionLib

Global variables (booleans: 0 = False, 1 = True).

===
Initialize:
===
def initialize():

Initialize.
if not my_scope.Initialized:
my_scope.Initialize(
'TCPIP0::lab-pxi-5.cos.is.keysight.com::hislip9-0.0::INSTR',
False,
False,
''
)

Clear the interface.
my_scope.System2.ClearIO
print "Interface cleared."

Set the Timeout to 15 seconds.
my_scope.System.TimeoutMilliseconds = 15000 # 15 seconds.
print "Timeout set to 15000 milliseconds."

Query instrument status after each I/O.
my_scope.DriverOperation.QueryInstrumentStatus = True

Get and display the oscilloscope's identity.
print "Description: '%s'" % my_scope.Identity.Description
print "Group capabilities: '%s'" % my_scope.Identity.GroupCapabilities
print "Identifier: '%s'" % my_scope.Identity.Identifier
print "Instrument firmware revision: '%s'" % my_scope.Identity.Instrume
ntFirmwareRevision
print "Instrument manufacturer: '%s'" % my_scope.Identity.InstrumentMan
ufacturer
print "Instrument model: '%s'" % my_scope.Identity.InstrumentModel
print "Revision: '%s'" % my_scope.Identity.Revision
print "Specification major version: '%s'" % my_scope.Identity.Specifica
tionMajorVersion
print "Specification minor version: '%s'" % my_scope.Identity.Specifica
tionMinorVersion
print "Supported instrument models: '%s'" % my_scope.Identity.Supported
InstrumentModels
print "Vendor: '%s'" % my_scope.Identity.Vendor
print "Serial number: '%s'" % my_scope.System.SerialNumber

Place oscilloscope in known state.
my_scope.Utility.Reset()

===

Creating a Project with IVI-COM Using Python 5

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 43

Capture:
===
def capture():

Use auto-scale to automatically set up oscilloscope.
print "Autoscale."
my_scope.Measurements.AutoSetup()

Set trigger mode.
my_scope.Trigger.Configure(
Type=AgInfiniiVisionLib.AgInfiniiVisionTriggerTypeEdge,
Holdoff=0.000000040
)
print "Trigger type: %s" % my_scope.Trigger.Type

Set edge trigger parameters.
my_scope.Trigger.Edge.Configure(
Source='Channel1',
Level=1.5,
Slope=AgInfiniiVisionLib.AgInfiniiVisionTriggerSlopePositive
)
print "Trigger edge source: %s" % my_scope.Trigger.Source
print "Trigger edge level: %s" % my_scope.Trigger.Level
print "Trigger edge slope: %s" % my_scope.Trigger.Edge.Slope

Save oscilloscope setup.
setup_bytes = my_scope.System.GetState()
nLength = len(setup_bytes)
nLength = len(setup_bytes) + 1 # Plus newline character.
f = open("setup.stp", "wb")
f.write(bytearray(setup_bytes))
f.write("\n") # Needs newline or will get error on restore.
f.close()
print "Setup bytes saved: %d" % nLength
print "Setup saved to setup.stp."
check_instrument_errors()

Change oscilloscope settings with individual commands:

Set channel 1 vertical scale and offset.
ch1 = my_scope.Channels.Item('Channel1')
ch1.Configure(
Range=4.0,
Offset=2.075,
Coupling=AgInfiniiVisionLib.AgInfiniiVisionVerticalCouplingDC,
ProbeAttenuation=10.0,
Enabled=True
)
ch1.Offset = 2.075 # Parameters can be configured using properties
print "Channel 1 vertical range: %f" % ch1.Range
print "Channel 1 vertical offset: %f" % ch1.Offset

Set horizontal scale and offset.
my_scope.Acquisition.ConfigureRecord(
TimePerRecord=0.005,
NumberOfPointsMin=1000,
StartTime=-0.0025

44 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

5 Creating a Project with IVI-COM Using Python

)
print "Time per record: %f" % my_scope.Acquisition.TimePerRecord
print "Acquisition start time: %f" % my_scope.Acquisition.StartTime
print "Number of points minimum: %d" % my_scope.Acquisition.NumberOfPoi
ntsMin

Set the acquisition type.
my_scope.Acquisition.Type = AgInfiniiVisionLib.AgInfiniiVisionAcquisiti
onTypeNormal
print "Acquisition type: %s" % my_scope.Acquisition.Type

Or, configure by loading a previously saved setup.
f = open("setup.stp", "rb")
setup_bytes = f.read()
f.close()
my_scope.System.PutState(array.array('B', setup_bytes))
check_instrument_errors()
print "Setup bytes restored: %d" % len(setup_bytes)

===
Analyze:
===
def analyze():

Make measurements.
--
meas_freq = my_scope.Measurements.Item('Channel1').ReadWaveformMeasurem
ent(

MeasFunction=AgInfiniiVisionLib.AgInfiniiVisionMeasurementFrequency,
MaxTimeMilliseconds=10000
)
print "Measured frequency on channel 1: %f" % meas_freq

meas_vamp = my_scope.Measurements.Item('Channel1').FetchWaveformMeasure
ment(

MeasFunction=AgInfiniiVisionLib.AgInfiniiVisionMeasurementAmplitude
)
print "Measured vertical amplitude on channel 1: %f" % meas_vamp

Download the screen image.
--
my_scope.Display2.InvertColorEnabled = False

image_bytes = my_scope.Display.GetScreenBitmap(
ImageFormat=AgInfiniiVisionLib.AgInfiniiVisionDisplayImageFormatPNG,
Palette=AgInfiniiVisionLib.AgInfiniiVisionDisplayPaletteColor
)
f = open("screen.png", "wb")
f.write(bytearray(image_bytes))
f.close()
print "Screen image written to screen.png."

Download waveform data.
--
(wfm_data, x_origin, x_increment) = my_scope.Measurements.Item('Channel
1').FetchWaveform()

Creating a Project with IVI-COM Using Python 5

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 45

print "Waveform array: ", wfm_data
print "Initial X time origin: ", x_origin
print "X increment: ", x_increment

Get the number of waveform points available.
print "Waveform points available: %s" % my_scope.Acquisition.RecordLeng
th

Get the waveform data.
wfm_points = len(wfm_data)
print "Number of waveform data values: %d" % wfm_points

Open file for output.
strPath = "waveform_data.csv"
f = open(strPath, "w")

Output waveform data in CSV format.
for i in xrange(0, wfm_points - 1):
time_val = x_origin + (i * x_increment)
f.write("%E, %f\n" % (time_val, wfm_data[i]))

Close output file.
f.close()
print "Waveform data written to %s." % strPath

===
Check for instrument errors:
===
def check_instrument_errors():

errors_found = False
while True:
(error_code, error_msg) = my_scope.Utility.ErrorQuery()
if error_code != 0:
print "ERROR: %d,\"%s\"" % (error_code, error_msg)
errors_found = True
else: # Error code == 0.
break

if errors_found:
print "Exited because of error."
sys.exit(1)

===
Main program:
===

my_scope = CreateObject(
'AgInfiniiVision.AgInfiniiVision'
)

Initialize the oscilloscope, capture data, and analyze.
initialize()
capture()

46 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

5 Creating a Project with IVI-COM Using Python

analyze()

Close the I/O session to the instrument.
my_scope.Close()

print "End of program"

47

Keysight M9241/42/43A PXIe Oscilloscopes
IVI Programming Guide

6 References

• Understanding Drivers and Direct I/O, Application Note 1465-3 (Keysight
literature part number: 5989-0110EN)

• www.ivifoundation.org

http://literature.cdn.keysight.com/litweb/pdf/5989-0110EN.pdf
http://www.ivifoundation.org

48 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

6 References

49

Keysight M9241/42/43A PXIe Oscilloscopes
IVI Programming Guide

Glossary

A

ADE (application development environment) — An integrated suite of software
development programs. ADEs may include a text editor, compiler, and debugger,
as well as other tools used in creating, maintaining, and debugging application
programs. Example: Microsoft Visual Studio.

API (application programming interface) — An API is a well-defined set of set of
software routines through which application program can access the functions and
services provided by an underlying operating system or library. Example: IVI
Drivers

C

C# (pronounced "C sharp") — C-like, component-oriented language that
eliminates much of the difficulty associated with C/C++.

D

Direct I/O Commands sent directly to an instrument, without the benefit of, or
interference from a driver. SCPI Example: SENSe:VOLTage:RANGe:AUTO Driver (or
device driver) — a collection of functions resident on a computer and used to
control a peripheral device.

DLL (dynamic link library) — An executable program or data file bound to an
application program and loaded only when needed, thereby reducing memory
requirements. The functions or data in a DLL can be simultaneously shared by
several applications.

50 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

Glossary

I

Input/Output (I/O) layer The software that collects data from and issues
commands to peripheral devices. The VISA function library is an example of an I/O
layer that allows application programs and drivers to access peripheral
instrumentation.

IVI (Interchangeable Virtual Instruments) — a standard instrument driver model
defined by the IVI Foundation that enables engineers to exchange instruments
made by different manufacturers without rewriting their code.
www.ivifoundation.org

IVI COM drivers (also known as IVI Component drivers) — IVI COM presents the
IVI driver as a COM object in Visual Basic. You get all the intelligence and all the
benefits of the development environment because IVI COM does things in a smart
way and presents an easier, more consistent way to send commands to an
instrument. It is similar across multiple instruments.

M

Microsoft COM (Component Object Model) — The concept of software
components is analogous to that of hardware components: as long as components
present the same interface and perform the same functions, they are
interchangeable. Software components are the natural extension of DLLs.
Microsoft developed the COM standard to allow software manufacturers to create
new software components that can be used with an existing application program,
without requiring that the application be rebuilt. It is this capability that allows
T&M instruments and their COM-based IVIComponent drivers to be interchanged.

N

.NET Framework The .NET Framework is an object-oriented API that simplifies
application development in a Windows environment. The .NET Framework has two
main components: the common language runtime and the .NET Framework class
library.

V

VISA (Virtual Instrument Software Architecture) — The VISA standard was
created by the VXIplug&play Foundation. Drivers that conform to the VXIplug&play
standards always perform I/O through the VISA library. Therefore if you are using
Plug and Play drivers, you will need the VISA I/O library. The VISA standard was
intended to provide a common set of function calls that are similar across physical
interfaces. In practice, VISA libraries tend to be specific to the vendor's interface.

Glossary

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 51

VISA-COM The VISA-COM library is a COM interface for I/O that was developed
as a companion to the VISA specification. VISA-COM I/O provides the services of
VISA in a COM-based API. VISA-COM includes some higher-level services that are
not available in VISA, but in terms of low-level I/O communication capabilities,
VISA-COM is a subset of VISA. Agilent VISA-COM is used by its IVIComponent
drivers and requires that Agilent VISA also be installed.

52 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

Glossary

Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide 53

Index

Symbols

.NET Framework, 50
#endregion preprocessing directive, 25
#region preprocessing directive, 25

A

ADE (application development
environment), 49

AgInfiniiVision driver name, 17
API (application programming

interface), 49
APIs for M9241/42/43A PXIe

oscilloscopes, 11

B

building a program, 35

C

C#, 49
Cache initialization option, 32
class driver, IVI, 14
class-compliant hierarchy for M924xA, 17
class-compliant specific driver, IVI, 14
class-compliant, IVI, 13
class-compliant, IVI driver hierarchy, 16
code, IVI-COM library example in

Python, 41
COM session factory instantiation of

IVI-COM driver, 26
compliant, IVI, 13
Console Application, create, 22
copyright, 2
custom specific driver, IVI, 14

D

defined values, 19
Direct I/O, 49
direct instantiation of IVI-COM driver, 26
DLL (dynamic link library), 49
driver instance, initializing, 27
driver types, IVI, 14
driver, closing, 34
driver, IVI, 14

DriverSetup, Initialize() option, 32

E

ecample program, code structure, 35
END message not supported in PXI

interface, 29
enum values, 19
example program, full code listing, 36
example programs, additional, 39

F

function names, 19

G

glossary, 49

H

hierarchy, IVI driver, 16
HiSLIP address, 28
HiSLIP address and PXI address

differences, 29

I

IAgInfiniiVision7 root interface, 17
IdQuery, Initialize() option, 31
IIviDriver interface, 16
IIviScope root interface, 17
Initialize() options, 30
Initialize() prameters, 29
Input/Output (I/O) layer, 50
instrument class names, 19
instrument-specific hierarchy for

M924xA, 17
instrument-specific, IVI driver hierarchy, 16
IntelliSense, 30
InterchangeCheck initialization option, 32
interface names, 19
interfaces, viewing in Visual Studio, 17
IVI (Interchangeable Virtual

Instruments), 50
IVI class driver, 14
IVI COM drivers, 50

IVI driver, 14
IVI driver naming conventions, 19
IVI driver types, 14
IVI Inherent Capabilities, 16
IVI instrument classes, 11
IVI naming conventions, general, 19
IVI specific driver, 14
IVI-COM driver, creating an instance, 26
IVI-COM example in Python, 41
IVI-COM naming conventions, 19
IviScope driver name, 17

M

Microsoft COM (Component Object
Model), 50

Model initialization option, 32

N

naming conventions, IVI drivers, 19
new line required with PXI address

message, 29
notices, 2

O

OptionString, Initialize() option, 32

P

program steps, writing, 33
project, creating, 21
project, creating Python, 41
PXI address and HiSLIP address

differences, 29
Python, IVI-COM example, 41

Q

QueryInstrStatus initialization option, 32

R

RangeCheck initialization option, 32
RecordCoercions initialization option, 32

54 Keysight M9241/42/43A PXIe Oscilloscopes IVI Programming Guide

Index

reference, IVI driver, 32
references, 47
references, adding, 23
related documentation, 7
Reset, Initialize() option, 31
resource names, 27
ResourceName, Initialize() option, 31
running a program, 35

S

Simulate initialization option, 32
specific driver, IVI, 14
sub-interface names, 19

T

Trace initialization option, 32

U

using statements, adding, 25

V

VISA (Virtual Instrument Software
Architecture), 50

VISA-COM, 51
Visual Studio, viewing interfaces, 17

W

warranty, 2

	Contents
	What You Will Learn in This Programming Guide
	Related Websites
	Related Documentation
	Overall Process Flow

	Installing Hardware, Software, and Licenses
	APIs for the M9241/42/43A PXIe Oscilloscopes
	IVI Compliant or IVI Class Compliant
	IVI Driver Types
	IVI Driver Hierarchy
	Class-Complaint and Instrument-Specific Hierarchies for the M924xA
	Naming Conventions Used to Program IVI Drivers
	General IVI Naming Conventions
	IVI-COM Naming Conventions

	Creating a Project with IVI-COM Using C-Sharp
	Step 1 - Create a Console Application
	Step 2 - Add References
	Step 3 - Add "using" Statements
	Step 4 - Create Instance of the IVI-COM Driver
	Step 5 - Initialize the Driver Instance
	Resource Names
	Initialize() Parameters
	Initialize() Options

	Step 6 - Write the Program Steps
	Step 7 - Close the Driver
	Step 8 - Building and Running a Complete Program Using Visual C-Sharp
	Example Program - Code Structure
	Example Program - Full Code Listing

	Additional Example Programs

	Creating a Project with IVI-COM Using Python
	References
	Glossary
	Index

