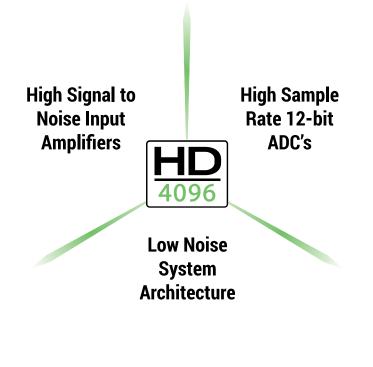


UNRIVALED PERFORMANCE, UNBEATABLE VALUE

Highest Resolution HD4096 technology, 12 bits all the time

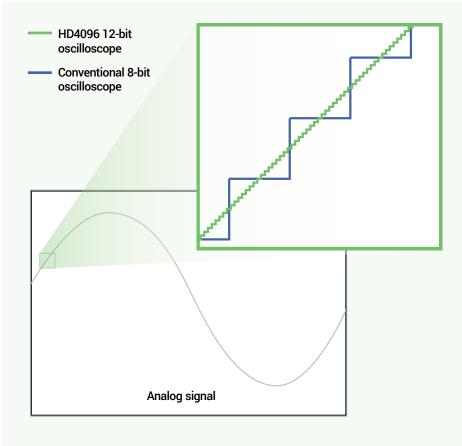
More Capability than you imagined

Comprehensive Probe Support Over 30 probes in 9 categories


Unrivaled Performance, Unbeatable Value

WaveSurfer 4000HD extends Teledyne LeCroy's leadership in **High Definition Oscilloscopes** with a bright, 12.1" touch screen display, performance without compromise, and **price points that fit your budget**.

12 bits all the time.


HD4096 TECHNOLOGY - 12 BITS ALL THE TIME

Teledyne LeCroy high definition 12-bit oscilloscopes use unique HD4096 technology to provide superior and uncompromised measurement performance:

- 12-bit ADCs with high sample rates
- High signal-to-noise amplifiers
- Low noise system architecture (to 1 GHz)

Oscilloscopes with HD4096 technology have higher resolution than conventional 8-bit oscilloscopes (4096 vs. 256 vertical levels) and low noise for uncompromised measurement performance. The 12-bit ADCs support capture of fast signals and oscilloscope bandwidth ratings up to 1 GHz, while 5 GS/s sample rate ensures the highest measurement accuracy and precision. The high performance input amplifiers deliver pristine signal fidelity, and the low-noise system architecture provides an ideal signal path to ensure that signal details are delivered accurately to the oscilloscope display – 16x closer to perfect.

16x Closer to Perfect

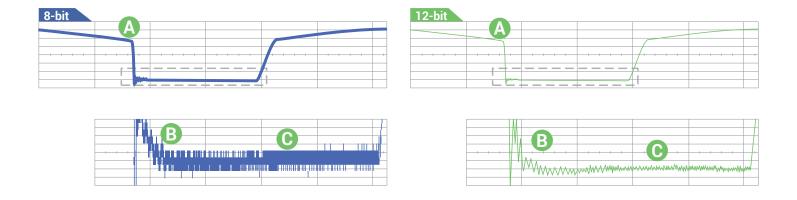
16x more resolution

HD4096 technology provides 12 bits of vertical resolution — 16x more resolution than conventional 8-bit oscilloscopes. The 4096 discrete vertical levels reduce the quantization error compared to 256 vertical levels. This improves the accuracy and precision of the signal capture and increases measurement confidence.

EXPERIENCE THE DIFFERENCE

Experience HD4096 accuracy, detail, and precision and never use an 8-bit oscilloscope again. Whether the application is general-purpose design and debug, high-precision analog sensors, power electronics, automotive electronics, mechatronics, or other specialized applications, the HD4096 technology provides unsurpassed confidence and measurement capabilities.

Clean, crisp waveforms


When compared to waveforms acquired and displayed using conventional 8-bit oscilloscopes, waveforms captured with HD4096 12-bit technology are dramatically crisper and cleaner, and are displayed more accurately. Once you see a waveform acquired with HD4096 technology, you will not want to go back to using a conventional 8-bit oscilloscope.

More signal details

16x more resolution provides more signal detail. This is especially helpful for analyzing wide dynamic range signals where very small amplitude signal details must be viewed. 12-bit acquisitions combined with the oscilloscope's vertical and horizontal zoom capabilities provide unparalleled insight into system behaviors and problems.

Unmatched measurement precision

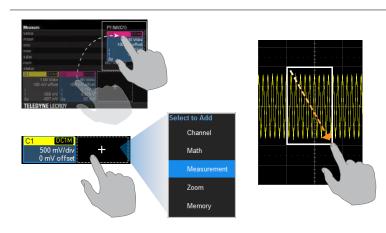
HD4096 technology delivers measurement precision several times better than conventional 8-bit oscilloscopes. Higher oscilloscope measurement precision results in better ability to assess corner cases and design margins, perform root cause analysis, and create the best possible solution for any discovered design issue.

Clean, crisp waveforms | Thin traces show the actual waveform with minimal noise interference.

More signal details | Waveform details can now be clearly seen on an HD4096 12-bit oscilloscope.

Unmatched measurement precision | Measurements are more precise and not affected by quantization noise.

MORE CAPABILITY THAN YOU IMAGINED

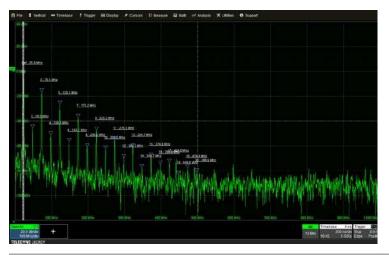

Protocol Analysis with Serial Trigger and Decode

- Intuitive, color-coded overlays make it easy to understand serial data information
- Powerful, conditional data triggering capabilities
- Interactive decode table summarizes results of two different protocol decodes
- Touch a row in the table to automatically zoom and display the selected packet
- Search and conditional filtering

Index	Time	 Protocol 	 Message 	Data	CRC	Status 🚽
▶ 11	323.943 µs	SSPI	0x43	0x43		
▶ 12	419.72 µs	UART	254	0xfe		
▶ 13	422.595 µs	SSPI	0x72	0x72		
▶ 14	521.247 µs	SSPI	0x6f	0x6f		
▶ 15	529.70 µs	UART	254	0xfe		

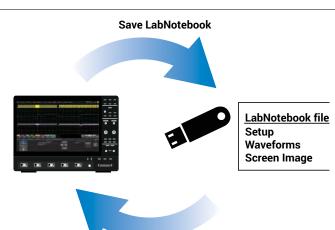
Logic Analysis with 16-channel Mixed Signal Capability

- Simultaneously view, measure, and analyze 4 analog and 16 digital channels
- Dedicated digital logic port does not consume analog channels
- Analog and digital channels can be incorporated into a single pattern trigger
- Find anomalies in digital waveforms using WaveScan, trends, statistics, and histicons



MAUI with OneTouch

- Most unique touch screen features on any oscilloscope
- Drag-and-drop to dramatically reduce setup time
- All common operations can be performed with one touch



Spectrum Analyzer

- Spectrum analyzer style controls
- Automatically identify and mark peak frequencies, fundamental frequencies, and harmonics
- Easily make measurements with reference and delta markers

Built-in Waveform Generator

- Frequencies of up to 25 MHz
- Wide variety of waveform sources available
- Saved waveforms can be uploaded to oscilloscope to generate arbitrary waveforms

DVM and Frequency Counter

- 4-digit digital voltmeter, 5-digit frequency counter
- Works with any channel; measurements update even when system is not triggering
- Set voltage readings to DC, DC RMS, or AC RMS

The DVM license key can be downloaded at no charge from *teledynelecroy.com/ws4000hd/redeemdvm*

LabNotebook

- Store all setups, waveforms, and screen image in a single LabNotebook file
- Add descriptive notes to LabNotebooks, or mark up screen images
- Recall ("Flashback") LabNotebooks to restore oscilloscope to past state—including all setups, waveforms, and table data
- Extract component files from .LNB format files, or append other files to .LNB

To learn more about the capabilities of the WaveSurfer 4000HD, see the Oscilloscope Features, Options, and Accessories catalog <u>cdn.teledynelecroy.com/files/pdf/scope-options-accessories-catalog-wavesurfer.pdf</u>

COMPREHENSIVE PROBE SUPPORT

Active Power Rail Probe

RP4030

- Large (30 V) built-in offset, low noise
- Perfect for low impedance power rails
- Solder-in & U.FL connections

Active Voltage Probes

Current Probes

ZS1000, ZS1000-QUADPAK ZS1500, ZS1500-QUADPAK

- Low 0.9 pF input capacitance
- High input impedance (1 MΩ)
- Low cost

ОБОРУДОВАНИЕ

ГРУППА КОМПАНИЙ

Differential Probes

ZD1500, ZD1000, ZD500, ZD200 AP033

- High CMRR, high bandwidth, low noise
- 1 pF capacitance, wide dynamic range
- Series/shunt voltage measurement

High Voltage Differential Probes

HVD3102A, HVD3106A (1 kV) HVD3206A (2 kV) HVD3605A (6 kV)

- 1, 2, or 6 kV common-mode ratings
- Excellent CMRR (65 dB at 1 MHz)
- 1% gain accuracy

Passive Probes

High Voltage Passive Probes

HVP120 PPE4KV, PPE5KV, PPE6KV

• 1 kV to 6 kV ratings

Probe Adapters

- Safe and easy probing accessories
- Sense pin for automatic scaling

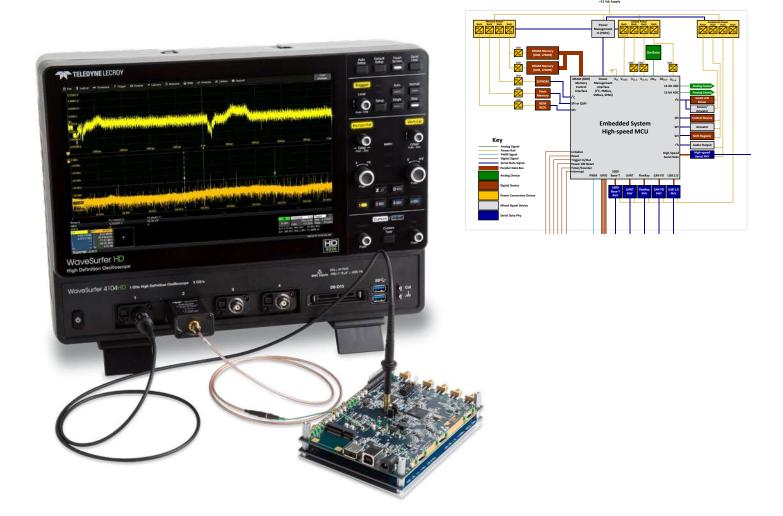
High Voltage Fiber Optically-isolated Probes

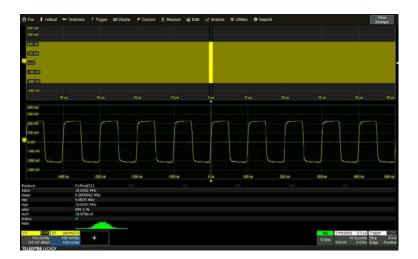
HVF0103

- 35 kV common-mode rating
- Highest possible CMRR (140 dB)
- Ideal for gate-drive measurements

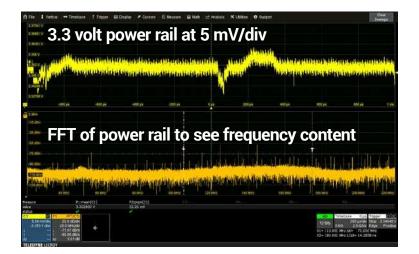
PP019, PP026

- Rated for 500 V
- Sense pin for automatic scaling
- High input impedance of 10 MΩ


TPA10


- Supports TekProbe interface level II
- Configure power and offset control
- Supports wide variety of Tek probes

BEST EMBEDDED SYSTEM DEBUG



Clock Analysis

- Capture long records to build statistics faster
- All-instance measurements measure every clock edge in any acquisition length
- Trend values over time
- Histicons show statistical distribution

Power Rail Analysis

- 12-bit resolution and low noise clearly shows small signal details in power rails
- FFT or Spectrum Analyzer determines root cause of high noise events
- Built-in high offset capability permits native probing of power rails

Protocol Analysis

- Trigger on protocol elements or specific DATA patterns using powerful conditional DATA triggering
- Highly adaptable ERROR frame triggering isolates protocol errors
- Combine UART/SPI bytes into single "message frame" to trigger on proprietary protocols
- Use Search and Zoom to correlate protocol events to other embedded signals

Power Analysis

- Measure and analyze operating characteristics of power conversion circuits
- Identify turn-on and turn-off transitions using color-coded overlays
- Automatically calculate switching device measurements
- Measure input/output power and input harmonics

WAVESURFER 4000HD AT A GLANCE

Key Attributes

- 1. 12.1" 1280 x 800 capacitive touch screen display
- 2. Buttons/indicators color-coded to associated waveform on display
- **3.** MAUI with OneTouch user interface for intuitive and efficient operation
- 4. HD4096 Technology 12 bits all the time
- 5. Use cursors and adjust settings without opening a menu

- 6. ProBus input supports over 30 probes in 9 product categories
- 7. Mixed Signal capability with 16 channel dedicated digital logic port
- 8. USB 3.1 ports for easy connectivity
- 9. WaveSource Arbitrary Waveform Generator
- **10.** HDMI output
- 11. USBTMC over USB 2.0 for data offload

SPECIFICATIONS

	WaveSurfer 4024HD	WaveSurfer 4034HD	WaveSurfer 4054HD	WaveSurfer 4104HD	
Vertical - Analog Channels		050 144	500 1 11	1.011	
<u>Analog Bandwidth @ 50 Ω (-3 dB)</u> Rise Time (10–90%)	200 MHz	350 MHz	500 MHz	1 GHz	
	1.75 ns	1 ns	700 ps	450 ps	
Input Channels					
Vertical Resolution	12 bits	0.0	0.5	0.0	
Effective Number of Bits (ENOB)	8.7	8.6	8.5	8.3	
<u>Vertical Noise Floor (rms, 50 Ω)</u> 1 mV/div	65 µV	70 µV	90 µV	105.04	
				125 µV	
2 mV/div	65 μV	70 μV	90 µV	125 µV	
<u> </u>	65 μV	70 μV	90 µV	125 µV	
10 mV/div	70 μV	75 μV	95 µV	130 µV	
20 mV/div	<u>95 μV</u> 160 μV	95 µV	<u>115 μV</u>	160 µV	
50 mV/div		175 µV	210 µV	280 µV	
100 mV/div	270 µV	290 µV	350 µV	465 µV	
200 mV/div	960 µV	925 µV	1.10 mV	1.65 mV	
500 mV/div	1.60 mV	1.75 mV	2.10 mV	2.75 mV	
1 V/div	2.70 mV	2.90 mV	3.50 mV	4.70 mV	
Sensitivity	50 Ω: 1 mV-1 V/div, fully var	iable; I MQ: I mV=10 V/div, f	rully variable		
DC Vertical Gain Accuracy (Gain Component of DC Accuracy)	±0.5% FS, offset at 0 V				
Channel-Channel Isolation	60 dB	60 dB up to 200 MHz 50 dB up to 350 MHz	60 dB up to 200 MHz 50 dB up to 500 MHz	60 dB up to 200 MHz 50 dB up to 500 MHz 40 dB up to 1 GHz	
Offset Range	50 Ω: 1 mV to 4.95 mV: ±1.6 V; 5 mV to 9.9 mV: ±4 V; 10 mV to 19.8 mV: ±8 V; 20 mV to 1 V: ±10 V 1 MΩ: 1 mV to 4.95 mV: ±1.6 V; 5 mV to 9.9 mV: ±4 V; 10 mV to 19.8 mV: ±8 V; 20 mV to 100 mV: ±16 V; 102 mV to 198 mV: ±80 V; 200 mV to 1 V: ±160 V; 1.02 V to 10 V: ±400 V				
DC Vertical Offset Accuracy	$\pm(1.0\% \text{ of offset setting} + 0.5)$				
Maximum Input Voltage	50 Ω: 5 Vrms, 1 MΩ: 400 V m	ax (DC + Peak AC \leq 10 kHz)			
Input Coupling	1 MΩ: AC, DC, GND; 50 Ω: DC, GND				
Input Impedance	50 Ω: ±2.0%; 1 MΩ: ±2.0% 1				
Bandwidth Limiters	20 MHz 20 MHz, 200 MHz 20 MHz, 200 MHz 20 MHz, 200 MHz				
Rescaling					
Horizontal - Analog Channels					
Acquisition Modes	Real-time, Roll, Average, Seq	uence (Segmented Memory ι	up to 1000 segments with 1 µ	s min. intersegment time)	
Timebases	Internal timebase common t	o 4 input channels			
Time/Division Range	500 ps/div to 100 s/div				
Clock Accuracy	±2.5 ppm + 1.0 ppm/year fro	m calibration			
Acquisition - Analog Channels					
Sample Rate (Single-Shot)	2.5 GS/s on 4 Ch, 5 GS/s on 2	2 Ch			
Standard Memory (4 Ch / 2 Ch)	12.5 Mpts / 25 Mpts				
Averaging	Summed averaging to 1024 sweeps				
Vertical, Horizontal, Acquisition	Vertical, Horizontal, Acquisition - Digital Channels (WS4KHD-MSO option only)				
Input Channels	16 Digital Channels				
Threshold Groupings	Pod 2: D15 to D8, Pod 1: D7 to	DO			
Threshold Selections	TTL (+1.4 V), 5 V CMOS (+2.5 V				
Maximum Input Voltage	±30 V Peak	~			
Threshold Accuracy	±(3% of threshold setting + 10	0 mV)			
Input Dynamic Range	±20 V				
Minimum Input Voltage Swing	500 mVpp				
Input Impedance (Flying Leads)	100 kΩ 5 pF				
Maximum Input Frequency	125 MHz				
Sample Rate	500 MS/s				
Record Length	12.5 Mpts - 16 Channels				
Minimum Detectable Pulse Width	4 ns				
Channel-to-Channel Skew	±(1 digital sample interval)				
User-defined Threshold Range	±10 V in 20 mV steps				

SPECIFICATIONS

WaveSurfer 4024HD WaveSurfer 4034HD WaveSurfer 4054HD WaveSurfer 4104HD

DC, AC, HFRej, LFRej		e to each source (except Line	trigger)			
DC, AC, HFRej, LFRej	o, or Line; slope and level uniqu	e to each source (except Line	trigger)			
			Any input channel, Ext, Ext/5, or Line; slope and level unique to each source (except Line trigger)			
	m 1 to 100,000,000 events					
0 to 100% of full scale						
0.9 division @ 10 MHz	0.9 division @ 10 MHz 1.0 divisions @ 200 MHz	0.9 division @ 10 MHz 1.0 divisions @ 200 MHz	0.9 division @ 10 MHz 1.0 divisions @ 200 MHz			
Edge, Width, Logic (Pattern), Interval (Signal or Pattern), [TV (NTSC, PAL, SECAM, HDT) Dropout, Qualified (State or Ed	V - 720p, 1080i, 1080p), Runt ge). External input supports E	Slew Rate, dge trigger only.			
ering (Optional)						
· · · · · · · · · · · · · · · · · · ·	4R1-RS232, CANT.1, CAN2.0, C	CAN FD, LIN, FlexRay				
Up to 6 parameters can be c	alculated at one time on any v	aveforms selected from the	following list of			
measurements: Amplitude, A Maximum, Mean, Minimum, Time (20%–80%), RMS, Skev	Area, Base, Delay, Duty Cycle, F Overshoot+, Overshoot-, Peak- w, Standard Deviation, Top, Wic	all Time (90%–10%), Fall Tim Peak, Period, Phase, Rise Tim	e (80%–20%), Frequency, ne (10%–90%), Rise			
Use front panel QuickZoom	button, or Rectangle-Zoom us	ing touch screen or mouse.				
Up to 2 math functions can l operations: Sum, Difference, Floor, Integral, Invert, Recipro	be calculated at one time on a , Product, Ratio, Absolute Valu ocal, Rescale, Roof, SinX/x, So	ny waveforms, selected from e, Average, Derivative, Enhand uare, Square Root, Trend, Zoo	ced Resolution, Envelope,			
	touch screen					
1280 x 800 pixels						
PP019 (5 mm),	PP026 (5 mm),					
		nt, and differential probes				
1 x 10/100BaseT Ethernet ir						
		Set				
VICP of VXI-11, LXI compati	Sie					
100 to 240 VAC +10% @ 50	to 60 Hz +10%: 100 to 120 V/	C +10% @ 400 Hz +5%; autor	natic AC voltage selection			
	10 00 112 ±10%, 100 10 120 VA	ω ±τυ∞ (ω 400 ΠΖ ±3%, autor	natio Ao voltage selection			
AV UCT / W UCT						
Operating: 0 °C to +50 °C. No		2				
Operating: 5% to 90% BH (non-condensing) at \leq 30 °C, upper limit derates to 50% BH (non-condensing) at +50 °C;						
Operating: 3,048 m (10,000	ft) max at ≤ 25 °C; Non-operat	ing: up to 12,192 meters (40.0	000 ft)			
			,			
	<u>/3 mm x 380 mm x 160 mm)</u>					
I I. / Ibs (5.3 kg)						
CE compliant III and all lie	sted: conforme to LU 61010 1	(3rd Edition) LIL 61010 2 020) (1st Edition) and			
CAN/CSA C22.2 No. 61010-	1-12	(STU EUILIOTI), UE 01010-2-030	i (TSCEURIOH), anu			
3-year warranty; calibration i	recommended annually. Optio	nai service programs include	extended warranty,			
upgrades, and calibration se	IVICES.		ЧНОЕ			
		TIAT	РУДОВАНИ			
	Ext (±0.610 mV); Ext/5 (±3.0 175,000 waveforms/second 0.9 division @ 10 MHz Edge, Width, Logic (Pattern), Interval (Signal or Pattern), E ering (Optional) 12C, SPI (SPI, SSPI, SIOP), UA Up to 6 parameters can be c measurements: Amplitude, A Maximum, Mean, Minimum, Time (20%–80%), RMS, Skev measurements. Measureme Use front panel QuickZoom Up to 2 math functions can operations: Sum, Difference, Floor, Integral, Invert, Recipri Spectrum output; Rectangul 12.1" widescreen capacitive 1280 x 800 pixels PP019 (5 mm), 1 per channel BNC and Teledyne LeCroy Pi 1 x 10/100BaseT Ethernet in 1 Micro SD port, 16 GB Micro 2 front USB 3.1 Gen1 ports, 3 1 USBTMC over USB 2.0 por 1 HDMI port, supports up to Microsoft COM Automation VICP or VXI-11, LXI compatil 100 to 240 VAC ±10% @ 50 90 W / 90 VA 150 W / 150 VA Operating: 0 °C to +50 °C; No Operating: 5% to 95% re Operating: 5% to 90% RH (no Non-operating: 5% to 95% re Operating: 3,048 m (10,000 ° 10.7" H x 14.9" W x 6.3" D (2" 11.7 lbs (5.3 kg)	±4.1 div from center (typical) Ext (±0.610 mV); Ext/5 (±3.05 V) 175,000 waveforms/second 0.9 division @ 10 MHz 1.0 division @ 10 Mits 1.0 division @ 10 Mits	±4.1 div from center (typical) Ext (±0.610 mV); Ext/5 (±3.05 V) 175.000 weveforms/second 0.9 division @ 10 MHz 0.9 division @ 10 MHz 1.0 divisions @ 200 MHz 0.9 division @ 10 MHz 1.0 divisions @ 200 MHz 1.0 divisions @ 200 MHz Edge, Width, Logic (Pattern), Dropout, Qualified (State or Edge). External input supports E erind (Optional) 12C, SPI (SPI, SSPI, SIOP), UART-RS232, CAN1.1, CAN2.0, CAN FD, LIN, FlexRay Up to 6 parameters can be calculated at one time on any waveforms, selected from the imeasurements: Amplitude, Area, Base, Delay, Dut VOLE, Fall Time (0% – 10%), Fall Time (2% – 80%), RMS, Skew, Standard Deviation, Top, Width-, Statistics and his measurements. Measurements can be gated. Use front panel QuickZoom button, or Rectangle-Zoom using touch screen or mouse. Up to 2 math functions can be calculated at one time on any waveforms, selected from operations: Sum, Difference, Product, Ratio, Absolute Value, Average, Derivative, Enhanc Ploor, Integrin, Invert, Reciprocal, Rescale, Roof, SinX, Square, Square Root, Trend, Zoc Spectrum output; Rectangular, VonHann and FlatTop windows). 12.1* widescreen capacitive touch screen 1280 x 800 pixels PP019 (5 mm), 1 per channel BNC and Teledyne LeCroy ProBus for active voltage, current, and differential probes 1 x 10/100BaseT Ethernet interface (RJ45 port) 1. Micro SD port, 16 GB Micro SD card installed standard </td			

SPECIFICATIONS

WaveSurfer 4024HD WaveSurfer 4034HD WaveSurfer 4054HD WaveSurfer 4104HD

Digital Voltmeter (Optional, available no charge at teledynelecroy.com/ws4000hd/redeemdvm)

Functions	AC _{rms} , DC, DC _{rms} , Frequency
Resolution	ACV/DCV: 4 digits, Frequency: 5 digits
Measurement Rate	100 times/second, measurements update on the display 5 times/second
Vertical Settings Autorange	Automatic adjustment of vertical settings to maximize the dynamic range of measurements

WaveSource Arbitrary Waveform Generator (WS4KHD-FG option only)

General	(ite initial i copient eng)
Max Frequency	25 MHz
Channels	1
Sample Rate	125 MS/s
Arbitrary Waveform Length	16 kpts
Frequency Resolution	1 µHz
Vertical Resolution	14 bits
Vertical Range	±3 V (HiZ); ±1.5 V (50 Ω)
Waveform Types	Sine, Square, Triangle, Pulse, DC, Noise, ARB, Exponential Fall, Exponential Rise, Ramp, Gaussian, Lorentz, Cardiac,
	Haversine

Frequency Specification

riequency specification	
Sine/Haversine	1 μHz - 25 MHz
Square/Pulse	1 μHz - 10 MHz
Ramp/Triangular	1 μHz - 300 KHz
Exponential Fall/Rise	1 μHz - 1 MHz
Gaussian, Lorentz, Cardiac	1 μHz - 5 MHz
Noise	25 MHz (-3 dB)
Resolution	1 μHz
Accuracy	±50 ppm, over temperature
Aging	±3 ppm/year, first year
Output Specification	
Amplitude	4 mVpp - 6 Vpp (HiZ); 2 mVpp - 3 Vpp (50 Ω)
Vertical Accuracy	±(0.3 dB + 1 mV)
Amplitude Flatness	±0.5 dB
DC Offset	
Range (DC)	±3 V (HiZ); ±1.5 V (50 Ω)
Offset Accuracy	±(1% of offset value + 3 mV)
Waveform Output	
Impedance	50 Q ±2%
Protection	Short-circuit protection
Sine Spectrum Purity	
SFDR (Non Harmonic) @1.265 Vpp	
DC-1 MHz	-60 dBc
1 MHz - 5 MHz	-55 dBc
5 MHz - 25 MHz	-50 dBc
Harmonic Distortion @1.265 Vpp	
DC - 5 MHz	-50 dBc
5 MHz - 25 MHz	-45 dBc
Square/Pulse	
Rise/Fall time	24 ns (10% - 90%)
Overshoot	3% (typical - 1 kHz, 1 Vpp)
Pulse Width	50 ns minimum
Jitter	500 ps + 10 ppm of period (RMS cycle to cycle)
Ramp/Triangle	
Linearity	0.1% of Peak value output (typical - 1 kHz, 1 Vpp, 100% symmetric)
Symmetry	0% to 100%
-,	

ORDERING INFORMATION

Product Description	Product Code
WaveSurfer 4000HD Oscilloscopes	
200 MHz, 2.5 GS/s, 4 Ch, 12.5 Mpts/Ch	WaveSurfer 4024HD
High Definition Oscilloscope	
with 12.1" capacitive touch screen	
350 MHz, 2.5 GS/s, 4 Ch, 12.5 Mpts/Ch	WaveSurfer 4034HD
High Definition Oscilloscope with 12.1" capacitive touch screen	
500 MHz, 2.5 GS/s, 4 Ch, 12.5 Mpts/Ch	WaveSurfer 4054HD
High Definition Oscilloscope	
with 12.1" capacitive touch screen	
1 GHz, 2.5 GS/s, 4 Ch, 12.5 Mpts/Ch	WaveSurfer 4104HD
High Definition Oscilloscope	
with 12.1" capacitive touch screen	
Included with Standard Configurations	
÷10 passive probes (Qty. 4), Micro SD card (installe	
adapter, protective cover, Getting Started Guide, cor	
traceable calibration with certificate, power cable for	or the destination
country, 3-year warranty	
Multi-Instrument Options	
Mixed-Signal Oscilloscope (incl. 16-channel digital	WS4KHD-MS0
leadset, 22 extra large gripper probes, 20 ground	W34KI1D-W30
extenders, 5 flexible ground leads and license)	
	/S4KHD-MSO-LICENSE
Spectrum Analyzer (2020 release)	
WaveSource Arbitrary Waveform Generator	WS4KHD-FG
Serial Trigger and Decode Options	
AudioBus Trigger and Decode V Automotive Bundle: CAN, CAN FD, LIN,	VS4KHD-AUDIOBUS TD WS4KHD-AUTO TD
FlexRay Trigger and Decode	WS4KHD-AUTUTD
Embedded Bundle: I2C, SPI, UART-RS232	WS4KHD-EMB TD
Trigger and Decode	
Power Analysis Options	
Power Analysis	WS4KHD-PWR
General Accessories	
Softcase	WS4KHD-SOFTCASE
Rackmount Kit	WS4KHD-RACK

Bandwidth upgrades can be made at any time. Contact your local Teledyne LeCroy sales office.

Product Description

Probes	
<u>250 MHz Passive Probe – 5 mm, 10:1, 10 MΩ</u>	PP019
500 MHz Passive Probe – 5 mm, 10:1, 10 M Ω	PP026
1 GHz 5 K Ω 100:1 Passive Probe	PP065
Power/Voltage Rail Probe with 4 GHz bandwidth, _1.2x attenuation, ±30 V offset, ±800 mV	RP4030
RP4030 Browser Tip Accessory	RP4000-BROWSER
30 A, 50 MHz Current Probe –	CP030
AC/DC, 30 Arms,50 A peak pulse, 1.5-meter cable	
30 A, 10 MHz Current Probe – AC/DC, 30 Arms, 50 A peak pulse, 3-meter cable	CP030-3M
30 A, 50 MHz High Sensitivity Current Probe –	CP030A
AC/DC, 30 Arms, 50 A peak pulse, 1.5-meter cable	
30 A, 100 MHz Current Probe –	CP031
AC/DC, 30 Arms, 50 A peak pulse, 1.5-meter cable 30A, 100 MHz High Sensitivity Current Probe –	CP031A
AC/DC, 30 Arms, 50 A peak pulse, 1.5-meter cable	01001A
150 A, 10 MHz Current Probe – AC/DC; 150 Arms; 500 A peak pulse, 2-meter cable	CP150
150 A, 5 MHz Current Probe –	CP150-6M
AC/DC, 150 Arms, 500 A peak pulse, 6-meter cable	
500 A, 2 MHz Current Probe –	CP500
AC/DC, 500 Arms, 700 A peak pulse, 6-meter cable	
Deskew Calibration Source	DCS025
700 V, 25 MHz High Voltage Differential Probe (÷10,	÷100) AP031 HVD3102A
1 kV, 25 MHz High Voltage Differential Probe 1 kV, 25 MHz High Voltage Differential Probe	HVD3102A-NOACC
(without tip accessories)	HVD3T0ZA-NOACC
1 kV, 120 MHz High Voltage Differential Probe	HVD3106A
1 kV, 80 MHz High Voltage Differential Probe	HVD3106A-6M
with 6-meter Cable	
1 kV, 120 MHz High Voltage Differential Probe (without tip accessories)	HVD3106A-NOACC
2 kV, 120 MHz High Voltage Differential Probe	HVD3206A
2 kV, 80 MHz High Voltage Differential Probe	HVD3206A-6M
with 6-meter Cable 6 kV, 100 MHz High Voltage Differential Probe	HVD3605A
High Voltage Fiber Optic Probe, 60 MHz bandwidth	HVF0103
HVF0100 Universal ±1 V Tip Accessory	HVF0100-1X-TIP-U
HVF0100 Universal ±5 V Tip Accessory	HVF0100-5X-TIP-U
HVF0100 Universal ±10 V Tip Accessory	HVF0100-10X-TIP-U
HVF0100 Universal ±20 V Tip Accessory	HVF0100-20X-TIP-U
HVF0100 Universal ±40 V Tip Accessory	HVF0100-40X-TIP-U
HVFO 1 m Optical Cable Accessory	HVF0-1M-FIBER
HVFO 2 m Optical Cable Accessory	HVF0-2M-FIBER
HVFO 6 m Optical Cable Accessory	HVF0-6M-FIBER
100:1 400 MHz 50 MΩ 1 kV High Voltage Probe	HVP120
100:1 400 MHz 50 M Ω 4 kV High Voltage Probe	PPE4KV
1000:1 400 MHz 50 M Ω 5 kV High Voltage Probe	PPE5KV
1000:1 400 MHz 5 M Ω / 50 M Ω 6 kV High Voltage Pr	
200 MHz, 3.5 pF, 1 MΩ Active Differential Probe, ±20	
500 MHz, 1.0 pF Active Differential Probe, ±8 V	ZD500
500 MHz Active Differential Probe (÷1, ÷10, ÷100)	AP033
1 GHz, 1.0 pF Active Differential Probe, ±8 V	ZD1000
1.5 GHz, 1.0 pF Active Differential Probe, ±8 V	ZD1500
1 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	ZS1000
1.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	

Probe Adapters

Tek Probe to ProBus Probe Adapter

TPA10

1-800-5-LeCroy teledynelecroy.com Local sales offices are located throughout the world. Visit our website to find the most convenient location.

© 2019 by Teledyne LeCroy, Inc. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. Product or brand names are trademarks or requested trademarks of their respective holders.

Product Code