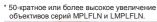
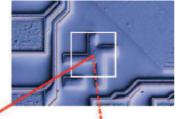
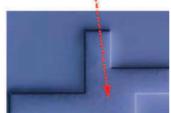


BX2M/MX51

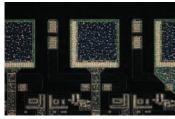

Прямые модульные микроскопы

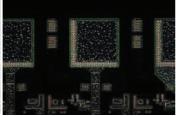
Превосходная парацентричность объективов UIS2


Полуапохроматические объективы UIS2 высокого увеличения. допуск центрирования между объективами револьверной головки микроскопа увеличен в два раза, чтобы изображение никогда не выходило за пределы центра поля наблюдения даже при


использовании цифровой камеры. Центрирование изображения между объективами обеспечивает быструю и эффективную работу.

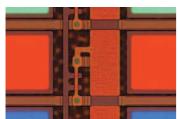
Изображение UIS2




Обычное изображение

Более яркое изображение при исследовании в темном поле

Новые полуапохроматические объективы значительно увеличивают чувствительность и увеличивают яркость темнопольных изображений, обеспечивая быстрое обнаружение дефектов подложек малого диаметра, используемых в современных малогабаритных датчиках и других электронных устройствах.

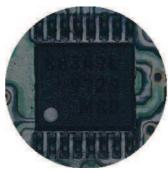

Изображение UIS2

Обычное изображение

Оптимально скорректированные объективы

В объективах LCPLFLN-LCD оптимально скомпенсированы сферические аберрации, которые являются причинами проблем при наблюдении образцов через предметные стекла. Объективы 20х и 50х используются при наблюдении через стекла толщиной от 0 до 1,2 мм, а объективы 100х имеют коррекцию для стекол толщиной до 0,7 мм.

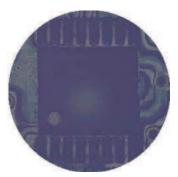
Изображение с коррекцией толщины стекла

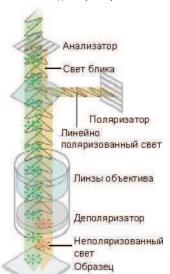


Нескорректированное изображение

Подавление бликов при наблюдении со сверхмалым увеличением

При наблюдении образцов, отражающих свет, при сверхмалом увеличении, блики препятствуют точному наблюдению. В объективах UIS2 сверхмалого увеличения деполяризатор, встроенный в объектив, устраняет блики и позволяет получать четкое высококонтрастное изображение, используя комбинацию пластин поляризатора и анализатора.


* Доступны объективы 1.25х и 2.5х.

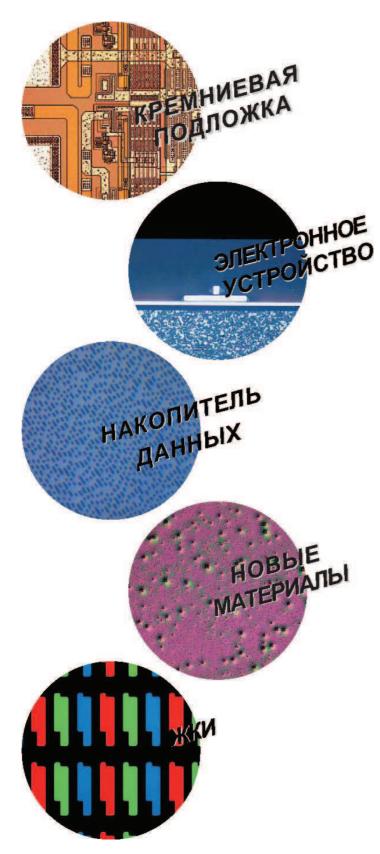

MPLFLN1.25x UIS2

■ Принципиальная схема системы устранения бликов

Поскольку свет, отраженный от поверхности линз объектива, сам по себе обладает линейной поляризацией, он подавляется анализатором в поперечном положении николя, и не влияет на изображение. С другой стороны, свет, проходящий через деполяризатор со стороны линз объектива, становится неполяризованным, и когда этот неполяризованный свет, отраженный от образца, проходит через анализатор, анализатор пропускает только линейно поляризованный свет, соответствующий направлению его поляризации, который и формирует изображение.

Блик без деполяризатора

Экологичность производства и снижение веса


Компания Olympus первой поставила задачу учета воздействия на окружающую среду и повышения экологичности производства. Как часть этой программы, в оптической системе UIS2 используется экологически чистое стекло без примесей свинца и мышьяка. Кроме того, большинство полуапохроматических объективов UIS2 стали легче на 2/3. Это вносит вклад в предотвращение загрязнения окружающей среды, повышение удобства замены объективов и т.д.

* Некоторые объективы UIS2 имеют такой же вес, как обычные объективы.

УНИВЕРСАЛЬНОСТЬ СИСТЕМЫ

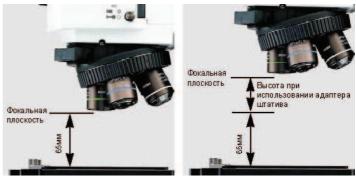
Широкий выбор удобных инструментов, отвечающих любым требованиям о анализа под микроскопом

Предметные столики и вставки

ВХ Выпускаются различные специальные предметные столики и вставки для них: вставки в столики размером 100 х 100 мм (U-MSSP4), поворотные столики (U-WHP2) для 3- и 4-дюймовых кристаллических образцов, а также большие предметные столики (U-SIC4R2 и U-SIC4L2), позволяющие

использовать стеклянную вставку (U-MSSPG) для наблюдения в проходящем свете.

MX Модель MX51 позволяет использовать 6-дюймовые поворотные столики и стеклянные вставки совместно со 150 мм столиком MX-SIC6R2, а также позволяет использовать


универсальные держатели и вставки со столиком 100 мм U-SIC4R2.

◆ U-SIC4R2
◆ BH3-SP6
◆ BH3-WHP6
◆ U-MSSP4
◆ U-WHP2
◆ BH2-WHR43
◆ BH2-WHR54

Наблюдение крупных образцов

ВХ Вертикальный микроскоп ВХ41М-LED/BX51М позволяет устанавливать образцы высотой до 65 мм. Кроме того, рефлекторный осветитель, встроенный в штатив микроскопа, обеспечивает дополнительную высоту, позволяя устанавливать адаптер между микроскопом и осветителем.

МХ Стандартная максимальная толщина образца составляет 30 мм. Для установки более крупных образцов необходимо использовать адаптеры

Широкий диапазон наклона наблюдательного тубуса для повышения комфорта оператора

Наклонный тубус U-TBI-3 используется для бинокулярного наблюдения, а наблюдательные тубусы U-SWETTR-5 и MX-SWETTR используются для документации. Такой широкий

выбор тубусов позволяет каждому оператору найти наиболее удобное положение наблюдения и эргономичную позу, что позволяет значительно снизить утомление при долговременном наблюдении.

Встроенный нейтрально-серый фильтр для более комфортного переключения между режимами светлого и темного поля

Осветитель отраженного света для исследования в светлом и темном поле обладает встроенным нейтрально-серым фильтром, защищающим глаза оператора и предотвращая резкое изменение яркости. Эту встроенную функцию можно отключить вручную.

Наблюдение в темном поле

ДИК призмы Номарского обеспечивают оптимальное изображение образца

Модули дифференциально-интерференционного контраста (ДИК) Номарского компании Olympus использует простой ползунковый переключатель и имеют одну призму. Предусмотрены три различные призмы ДИК: призма U-DICR для общих задач наблюдения, призма высокого разрешения U-DICRH и призма высокого контраста U-DICRHC, позволяющие получить требуемое разрешение и контрастность в зависимости от требования

исследования. Поскольку положение выходного зрачка объектива стандартизировано, положение призмы ДИК не нужно менять при смене объектива; например в случае серии MPLFLN от 5х до 150х.

U-DICR U-DICRHC

Пластины поляризатора и анализатора соединены для легкой установки и извлечения

Соединенные пластины поляризатора и анализатора встраиваются и убираются в оптическую ось одним движением, что повышает скорость перехода между режимом

ДИК/поляризации и другими методами наблюдения. Кроме того, поляризатор и анализатор спроектированы таким образом, что действия по установке и извлечению осветителя для отраженного света можно выполнять, как с левой, так и с правой стороны.

Одновременное крепление цифровой камеры и видеокамеры

Промежуточное приспособление на фототубус U-TRU совместно с наклонным тубусом U-TBI-3 позволяет одновременно устанавливать цифровую камеру и другое оборудование видеорегистрации.

Удобный блок изменения увеличения

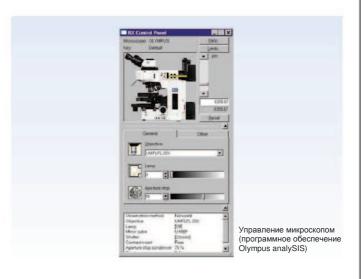
Блок изменения увеличения позволяет получить дополнительное 2-кратное увеличение изображения и идеально подходит для наблюдения без необходимости смены объектива для поддержания рабочего расстояния и рассмотрения мельчайших деталей образца.

ГРУППА КОМПАНИЙ

СЕРИЯ МИКРОСКОПОВ

Полная серия продукции для любых задач, даже для специального применения

BX61



Рас ирение функций при помощи моторизованного управления

Моторизованный микроскоп BX61 обладает функциями автоматической фокусировки и автоматического переключения режимов наблюдения в отраженном и проходящем свете. Программное обеспечение анализа изображений серии AnalySIS позволяет управлять различными операциями микроскопа посредством клавишной панели или персонального компьютера.

- Процедуры управления можно сопоставить на клавишной панели или клавиатуре ПК посредством программирования макросов. Это позволяет выбирать и выполнять специальные процедуры анализа нажатием одной кнопки.
- Предусмотрены различные моторизованные модули, включая высокоскоростные револьверные головки и автоматический осветитель с выбором режимов.
- Блок многоточечного активного лазерного автофокуса U-AFA2M-VIS, поддерживающий объективы с увеличением до 150х, обладает высокой стабильностью и широким диапазоном по оси Z при выполнении фокусировки.

