Российский разработчик и производитель высокотехнологичного электронного оборудования мирового уровня **РІДНАЯ**

КРАТКАЯ ИНФОРМАЦИЯ О КОМПАНИИ

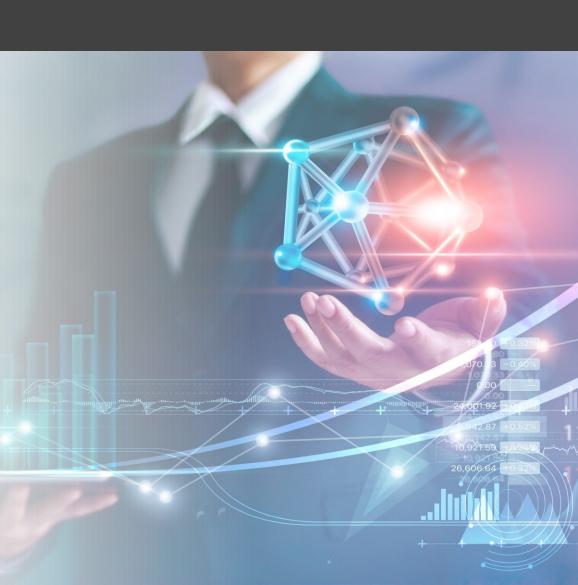
Компания ПЛАНАР создана в 1992 году группой инициативных, квалифицированных специалистов

В настоящий момент это дружный коллектив из более чем 400 сотрудников

За время своей работы компания запустила в производство более 500 серийных изделий собственной разработки

Собственные производственные площади превышают 7000 м²

ПОРТФЕЛЬ ПРОДУКЦИИ


Векторные анализаторы цепей (ВАЦ) и программное обеспечение к ним

Принадлежности к ВАЦ

- Меры для калибровки анализаторов цепей
- Автоматические калибровочные модули
- Аксессуары для анализаторов цепей
- Компоненты СВЧ-тракта

Оборудование для производства РЭА

РЕШЕНИЯ ДЛЯ ВСЕХ ЭТАПОВ ЖИЗНЕННОГО ЦИКЛА

Специализированное оборудование под задачу

Многопортовое оборудование

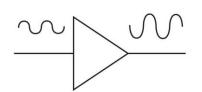
Проектирование (исследования и разработки)

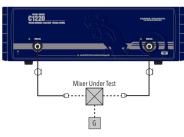
Оборудование с наилучшими характеристиками по цене/возможностям

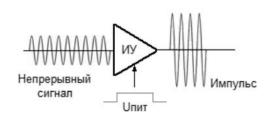
Производство

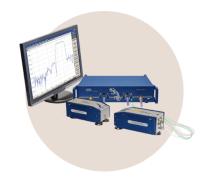
Оборудование с высокой надежностью и невысокой ценой

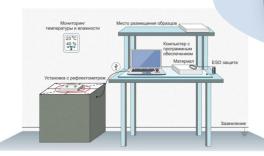
Эксплуатация


КПА (контрольно-проверочная аппаратура)


ШИРОКИЙ НАБОР ИЗМЕРИТЕЛЬНЫХ ВОЗМОЖНОСТЕЙ

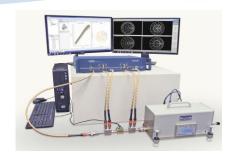

Измерение и настройка параметров пассивных узлов


Измерение параметров усилителей


Измерение параметров смесителей / преобразователей частоты

Измерения в импульсных режимах

Измерения в мм-диапазоне


Измерение параметров материалов

Измерение параметров SMD-компонентов

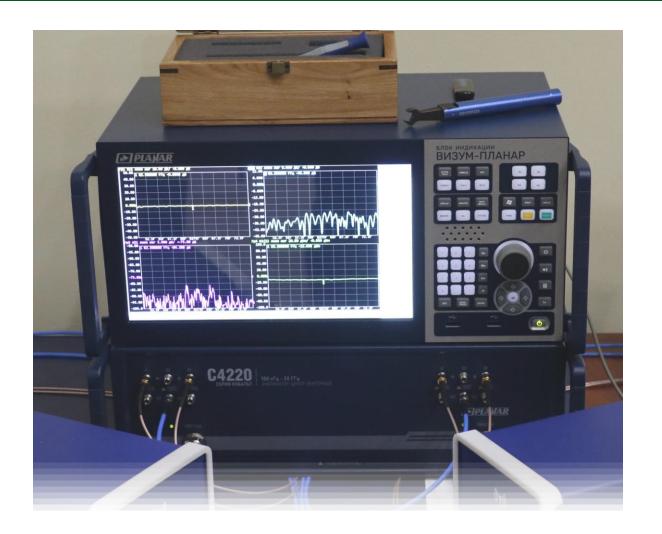
Измерение параметров многополюсников

Измерения с изменяемым импедансом нагрузки (Load Pull)

Измерение параметров антенн

ОСОБЕННОСТЬ: ВАЦ С USB-ИНТЕРФЕЙСОМ

- Возможность использования дополнительных вычислительных ресурсов современных компьютеров
- Гибкость выбора платформы (Windows, Linux)
- Информационная безопасность (данные измерений не хранятся в приборе)
- Возможности подключения любых экранов для демонстрации результатов измерений



ВАРИАНТ С ЭКРАНОМ И КНОПКАМИ...

Проект «Визум»

решение от одного из индустриальных партнеров :

дополнительный блок к ВАЦ (интеграция ПК, дисплея, блока дополнительного питания и внешней клавиатуры в виде блока кнопок на лицевой панели)

ВАРИАНТ В АВТОНОМНОМ ИСПОЛНЕНИИ...

30+ МОДЕЛЕЙ ВАЦ ДЛЯ РАЗЛИЧНЫХ ПРИМЕНЕНИЙ

Векторные рефлектометры CABAN

Легкие и компактные приборы для эксплуатации в полевых и лабораторных условиях в диапазоне частот до 4,8 / 6 / 15 / 18 ГГц

ВАЦ серии КОМПАКТ

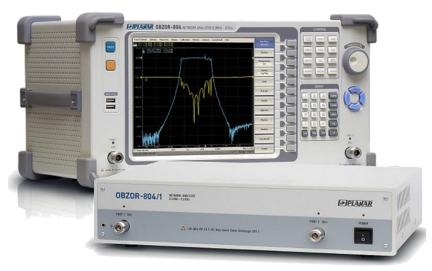
Широкий набор функций, превосходный динамический диапазон, высокая скорость измерений в диапазоне до 4,5 / 6,5 / 8,5 / 9 / 18 / 44 ГГц

30+ МОДЕЛЕЙ ВАЦ ДЛЯ РАЗЛИЧНЫХ ПРИМЕНЕНИЙ

ВАЦ серии КОБАЛЬТ

Лучшее значение динамического диапазона, скорости и точности измерений в диапазоне до 9 и 20 ГГц

Модули расширения частотного диапазона


Векторный анализ цепей в диапазоне до 54 / 75 / 110 / 178 ГГц

Поддержка решений до 330 ГГц

СЕРИЯ ОБЗОР СНИМАЕТСЯ С ПРОИЗВОДСТВА

№ 37556-08

№ 52992-13

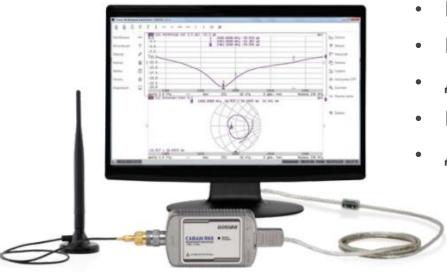
Векторные Анализаторы Цепей серии ОБЗОР

Анализаторы цепей, с диапазоном рабочих частот до 8 ГГц, с количеством измерительных портов 2 или 4

Снимаются с производства

0530P-304/1	от 0,3 МГц до 3,2 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	135	-55 +10	125
0530P-804/1	от 0,3 МГц до 8,0 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	140	-60 +10	100
0530P-814/1	от 0,3 МГц до 8,0 ГГц	50/2 прямой доступ к приемникам	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	140	-60 +10	100
0530P-808 0530P-808/1	от 0,3 МГц до 8,0 ГГц	50/4 два независимых источника сигнала	S ₁₁ , S ₂₁ , S ₄₄	140	-60 +10	100

ВЕКТОРНЫЙ АНАЛИЗАТОР ЦЕПЕЙ ОБЗОР-103


Измеритель комплексных коэффициентов передачи ОБЗОР-103

- Разработка, настройка и проверка различных радиотехнических устройств и компонентов в лабораторных условиях и в условиях промышленного производства, в том числе в составе автоматизированных измерительных стендов.
- Измерения S-параметров четырехполюсников в диапазоне частот от 0,3 до1500 МГц

	Диапазон частот	OM/ANCJIO		Динамический диапазон ³ (тип.), дБ	Выходная мощность, дБм	Время измерения на одной частоте, мкс
0Б30Р-103	от 0,3 МГц до 1,5 ГГц	50, 75/2	S ₁₁ , S ₂₁ , S ₃₁	133	3	200

ВЕКТОРНЫЕ РЕФЛЕКТОМЕТРЫ СЕРИИ САВАН

- Проверка, настройка и разработка антенно-фидерных устройств (АФУ)
- Непосредственное подключение к измеряемому устройству без СВЧ кабеля
- Дистанционное управление по протоколам COM, TCP/IP Socket
- Использование двух рефлектометров, для измерения S11, |S21|, |S12|, S22
- Диапазон рабочих температур от -10 °C до +50 °C

№ 71037-18, 57695-14

			Диапазон частот	Ом/число портов	Измеряемые параметры	диапазон ³ (тип.), дБ	мощность, дБм	измерения на одной частоте, мкс
		CABAN R541	от 85 МГц до 4,8 ГГц (5,4 ГГц тип.)	50/1	S ₁₁ , потери в кабеле S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂ ²	97	-30; -10	200
ABAN	CABAN	CABAN R150	от 85 МГц до 15 ГГц	50/1	S ₁₁ , потери в кабеле S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂ ²	115 (< 5 ГГц) 90 (> 5 ГГц)	0; -25	170
	серия	CABAN R60	от 1 МГц до 6 ГГц	50/1	S ₁₁ , потери в кабеле S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂ ²	109	-40 0	100
		CABAN R180	от 1 МГц до 18 ГГц	50/1	S ₁₁ , потери в кабеле S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂ ²	110 (< 6 ГГц) 94 (> 6 ГГц)	-15 0	100

Пиизмический

ВОЗМОЖНОСТИ ИЗМЕРЕНИЯ ПАРАМЕТРОВ АНТЕНН

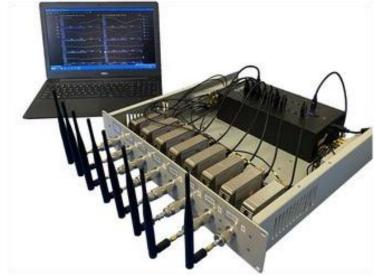
Измеряемые параметры: S₁₁, потери в кабеле

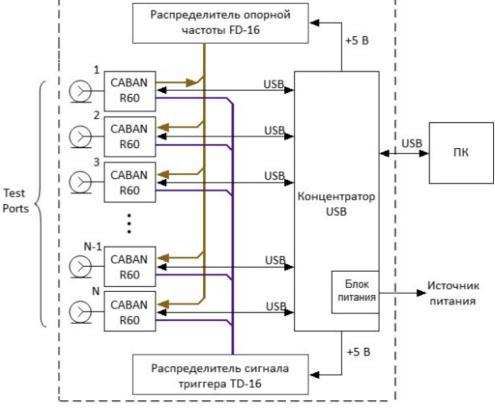
- Высокая точность измерений за счет непосредственного подключения к измеряемому устройству без необходимости использования СВЧ-кабелей
- Измерения как в лаборатории, так и на объектах
- Уменьшение времени на калибровку
- Снижение расходов на эксплуатацию оборудования
- Возможность мультипортовых измерений
- Возможность использования в составе автоматизированных измерительных комплексов

ВОЗМОЖНОСТИ ИЗМЕРЕНИЯ ПАРАМЕТРОВ АНТЕНН

Измеряемые параметры: S₁₁, потери в кабеле

- Высокая точность измерений за счет непосредственного подключения к измеряемому устройству без необходимости использования СВЧ-кабелей
- Измерения как в лаборатории, так и на объектах
- Уменьшение времени на калибровку
- Снижение расходов на эксплуатацию оборудования
- Возможность мультипортовых измерений
- Возможность использования в составе автоматизированных измерительных комплексов




МНОГОПОРТОВЫЕ ИЗМЕРЕНИЯ

Диплексоры, делители, сумматоры, антенные решетки

- измерения как модуля и фазы коэффициентов отражения Sxx так и скалярных коэффициентов передачи |Sij| и |Sji| между любой парой рефлектометров
- ПО RNVNA позволяет использовать одновременно до 16 рефлектометров, подключенных к одному USB контроллеру

N – количество задействованных рефлектометров

ВЕКТОРНЫЕ АНАЛИЗАТОРЫ ЦЕПЕЙ СЕРИИ ИРИДИУМ

Многопортовый Векторный Анализатор Цепей SN9000

- Диапазон рабочих частот: от 0,3 МГц до 9,0 ГГц
- Количество измерительных портов: 6, 8, 10, 12, 14, 16
- Измерение полной матрицы S-параметров без использования коммутационных матриц
- Области применения:

фазированные антенные решетки антенные коммутаторы многодиапазонные антенны входные каскады и устройства распределения сигнала

- Универсальная конструкция корпуса (настольное использование/монтаж в стойку 19")
- Удобное расположение измерительных портов
- Поддержка ОС Windows/Linux

S7530

Векторный Анализатор Цепей S7530

точные измерения параметров устройств в тракте 75 Ом

- Проверка, настройка и разработка устройств в условиях промышленного производства, лабораторий и в составе автоматизированных стендов
- Поддержка ОС Windows/Linux
- Дистанционное управление по протоколам СОМ, ТСР/IP Socket
- Малые габариты и вес: 297 x 160 x 44 мм / 1.7 кг

Диапазон частот	Импеданс, Ом/число портов	Измеряемые параметры	Динамический диапазон ** (тип.), дБ	Выходная мощность, дБм	Время измерения на одной частоте, мкс
от 0,02 МГц до 3,0 ГГц	75/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂ S ₁₁ , S ₂₁	123	-50 +5	200

S5045 S5065

S5085

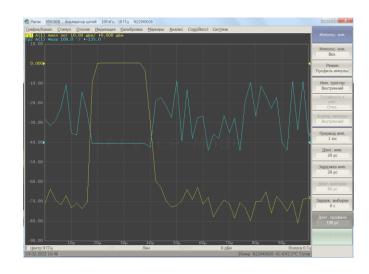
Векторные Анализаторы Цепей S50x5

производительность лабораторного прибора в компактном корпусе

- Проверка, настройка и разработка устройств в условиях промышленного производства, лабораторий и в составе автоматизированных стендов
- Встроенные измерительные возможности: анализ во временной области, измерение смесителей и преобразователей частоты
- Поддержка измерительных плагинов: учет измерительной оснастки (AFR)
- Поддержка ОС Windows/Linux
- Дистанционное управление по протоколам COM, TCP/IP Socket
- Малые габариты и вес: 297 х 160 х 44 мм / 1.7 кг

Диапазон частот	Импеданс, Ом/число портов	Измеряемые параметры	Динамический диапазон ** (тип.), дБ	Выходная мощность, дБм	Время измерения на одной частоте, мкс
от 0,009 МГц до 4,5 ГГц					
от 0,009 МГц до 6,5 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	130	- 55 +5	70
от 0,009 МГц до 8,5 ГГц					

S50°


Векторный Анализатор Цепей S50180

первый ВАЦ ПЛАНАР с интегрированным режимом импульсных измерений

- Измерение параметров активных и пассивных компонентов и устройств
- Опция импульсных измерений
- Встроенные измерительные возможности: анализ во временной области, измерение смесителей и преобразователей частоты
- Поддержка измерительных плагинов: учет измерительной оснастки (AFR)
- Поддержка ОС Windows/Linux
- Дистанционное управление по протоколам COM, TCP/IP Socket
- Малые габариты и вес: 360 х 200 х 65 мм / 3.8 кг

	Диапазон частот	Импеданс, Ом/число портов	Измеряемые параметры	Динамический диапазон ** (тип.), дБ	Выходная мощность, дБм	Время измерения на одной частоте, мкс
180	от 0,1 МГц до 18 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	135 (< 8 ГГц) 128 (> 8 ГГц)	-45 +10	24

Векторный Анализатор Цепей S50180

первый ВАЦ ПЛАНАР с интегрированным режимом импульсных измерений

Опция импульсных измерений:

Параметр

- Четыре встроенных генератора импульсов для управления модуляторами и внешними устройствами
- Два встроенных импульсных модулятора в трактах измерительных портов

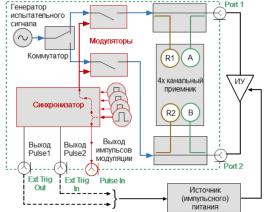
Минимальная длительность импульса

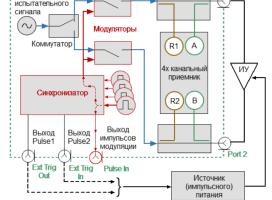
Диапазон установки длительности и задержки

Разрешение в режиме «профиль импульса»

Время нарастания радиоимпульса

Режимы измерений: «Точка в импульсе», «Профиль импульса», «Асинхронный импульсный режим»


Значение


от 100 нс до 1 с, шаг 100 нс

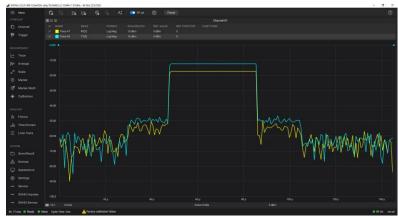
200 нс

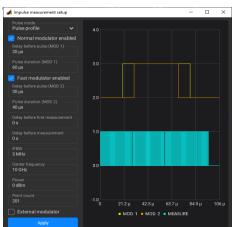
50 нс

4 мкс

S50244

S50444


Векторные Анализаторы Цепей S50244, S50444


высокая верхняя граница диапазона рабочих частот широкий динамический диапазон высокая скорость измерений

- Измерение параметров активных и пассивных компонентов и устройств
- Встроенные измерительные возможности: анализ во временной области, измерение смесителей и преобразователей частоты
- Поддержка режима импульсных измерений
- Поддержка измерительных плагинов: учет измерительной оснастки (AFR)
- Поддержка ОС Windows/Linux
- Дистанционное управление по протоколам COM, TCP/IP Socket»

Диапазон частот	Импеданс, Ом/число портов	Измеряемые параметры	Динамический диапазон ** (тип.), дБ	Выходная мощность, дБм	Время измерения на одной частоте, мкс
от 10 МГц до 44 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	125	-50 0	22
01 10 1 11 ц до 44 11 ц	50/4	S ₁₁ , S ₂₁ S ₄₄	135 -50 0		22

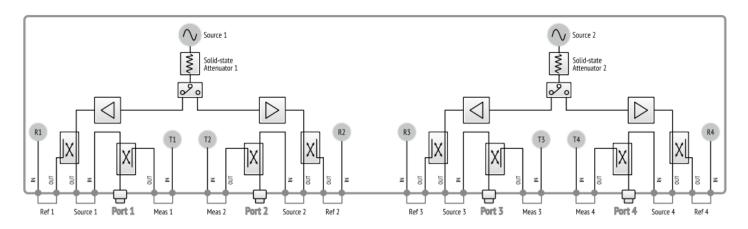
Векторные Анализаторы Цепей S50244, S50444 расширенные возможности режима импульсных измерений (опция PLS):

- Семь встроенных генераторов импульсов
- Набор дополнительных фильтров ПЧ: ЗМГц, 5МГц, 7.5МГц, 10МГц
- Два вида встроенных импульсных модуляторов в трактах измерительных портов: стандартный и наносекундный;
- Режимы измерений: «Точка в импульсе», «Профиль импульса»,
- «От импульса к Импульсу», «Усреднение импульса»;
- Функция «программное стробирование» для минимизации переходных процессов

Параметр	Стандартный	Наносекундный	
Минимальная длительность импульса	1 мкс	20 нс	
Время нарастания радиоимпульса	250 нс	5 нс	
Подавление в паузе	> 120 дБ	35 дБ	
Разрешение в режиме «профиль импульса»	100 нс		

Лидирующие в отрасли показатели **динамического диапазона** и **скорости измерений** для **прецизионных измерений** параметров радиотехнических цепей

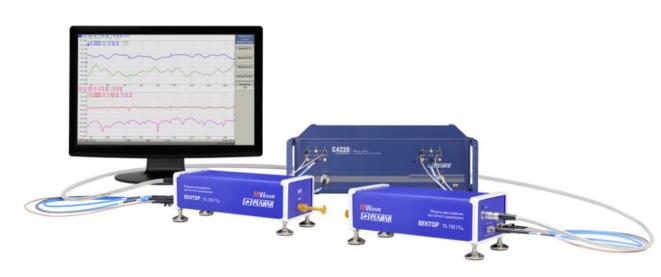
		Диапазон частот	Импеданс, Ом/число портов	Измеряемые параметры	Динамический диапазон ** (тип.), дБ	Выходная мощность, дБм	Время измерения на одной частоте, мкс	Два независимых источника сигнала
	C1209	от 0,1 МГц до 9,0 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	152	- 60 +15	10	
	C2209	от 0,1 МГц до 9,0 ГГц	50/2 прямой доступ к приемникам	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	152	-60 +15	10	
	C4209	от 0,1 МГц до 9,0 ГГц	50/2 с возможностью расширения до 110 ГГц	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	152	-60 +15	10	
	C1409	от 0,1 МГц до 9,0 ГГц	50/4	S ₁₁ , S ₂₁ S ₄₄	152	-60 +15	10	
ЬТ	C2409	от 0,1 МГц до 9,0 ГГц	50/4 прямой доступ к приемникам	S ₁₁ , S ₂₁ S ₄₄	152	-60 +15	10	да
05AJ	C4409	от 0,1 МГц до 9,0 ГГц	50/4 с возможностью расширения до 110 ГГц	S ₁₁ , S ₂₁ S ₄₄	152	-60 +15	10	
серия КОБАЛЬТ	C1220	от 0,1 МГц до 20 ГГц	50/2	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	145	-60 +10	12	
93	C2220	от 0,1 МГц до 20 ГГц	50/2 прямой доступ к приемникам	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	145	-60 +10	12	
	C4220	от 0,1 МГц до 20 ГГц	50/2 с возможностью расширения до 110 ГГц	S ₁₁ , S ₂₁ , S ₁₂ , S ₂₂	145	-60 +10	12	
	C1420	от 0,1 МГц до 20 ГГц	50/4	S ₁₁ , S ₂₁ S ₄₄	145	-60 +10	12	
	C2420	от 0,1 МГц до 20 ГГц	50/4 прямой доступ к приемникам	S ₁₁ , S ₂₁ S ₄₄	145	-60 +10	12	да
	C4420	от 0,1 МГц до 20 ГГц	50/4 с возможностью расширения до 110 ГГц	S ₁₁ , S ₂₁ S ₄₄	145	- 60 +10	12	


Лидирующие в отрасли показатели **динамического диапазона** и **скорости измерений** для **прецизионных измерений** параметров радиотехнических цепей

- Наивысшая точность измерений (до ±0,1 дБ / ±1° для КП)
- До 2 встроенных источников сигналов
- Прямой доступ к опорным и измерительным приемникам
- Интерфейсы для подключения расширителей частоты до 178 ГГц
- Поддержка ОС Windows/Linux
- Стандартный гарантийный срок: 3 года

ИЗМЕРИТЕЛЬНАЯ СИСТЕМА **КОБАЛЬТ FX**

- Диапазон частот: от 18 до 54 ГГц
- Тип соединителя: NMD 1.85 мм
- Вынесение плоскости измерений на расстояния
- Основные измеряемые параметры и возможности:
 - S-параметры
 - Анализ и фильтрация во временной области
 - Балансные измерения
 - Измерение устройств с переносом частоты
 - Антенные измерения



TFE1854***

РАСШИРЕНИЕ ЧАСТНОГО ДИАПАЗОНА

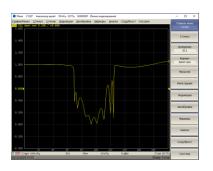
Диапазон частот

- От 18 до 54 ГГц (TFE1854) работает со всеми ВАЦ семейства КОБАЛЬТ
- ВЕКТОР 50-75 ГГц
- ВЕКТОР 75-110 ГГц
- ВЕКТОР 110-170 ГГц (лето 2024)
 работают только с 20 ГГц ВАЦ семейства КОБАЛЬТ

Модули расширения частотного диапазона (МРЧД) могут применяться для измерения фильтров, в антенных измерениях и для измерений на зондовых станциях (on-wafer). Доступны режимы работы с непрерывным сигналом и с модулированной несущей.

Автономная работа модулей не предусмотрена, без подключения к анализатору цепей модуль не может быть использован для проведения измерений.

НОВЫЕ МОДУЛИ РАСШИРЕНИЯ ЧАСТНОГО ДИАПАЗОНА


МРЧД серии ВЕКТОР (ВЕКТОР-А):

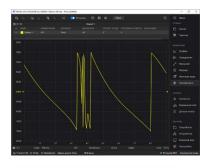
- Расширение частотного диапазона С4х20 до 178 ГГц
- Динамический диапазон измерений: до 130 дБ
- Выходная мощность: до 14 дБм
- Серия ВЕКТОР-А имеет электронный аттенюатор (диапазон регулировки от 0 до -40 дБ)

Модель	Тип соединителя измерительного порта
ВЕКТОР 50 – 75 ГГц	WR15, UG-385/U
ВЕКТОР 75 – 110 ГГц	WR10, UG-387/U-M
ВЕКТОР 110 – 170 ГГц	WR6, UG-387/U-M

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

S₂VNA

для работы с 2-портовыми анализаторами цепей серий ОБЗОР, КОМПАКТ, КОБАЛЬТ (Windows, Linux)


S4VNA

для работы с 4-портовыми анализаторами цепей серий ОБЗОР, КОМПАКТ, КОБАЛЬТ (Windows, Linux)

VNA Performance Test

для проведения поверки и калибровки ВАЦ ПЛАНАР с требуемым комплектом принадлежностей в автоматическом режиме



SNVNA

для работы с многопортовыми анализаторами цепей серии ИРИДИУМ (Windows)

RVNA

для работы с рефлектометрами серии CABAN (Windows, Linux)

ДОПОЛНИТЕЛЬНЫЕ ОПЦИИ

Предназначены для расширения функциональных возможностей ВАЦ

Аппаратные опции:

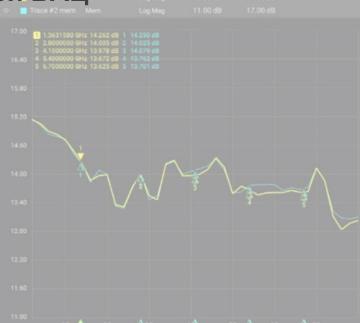
VISUM – внешний блок с экраном, ПК и клавиатурой на внешней панели

AUX – встроенный 2-канальный вольтметр постоянного тока

Программно-аппаратные опции:

NF – измерение коэффициента шума

Программные опции:


AFR – исключение измерительной оснастки (ранее ПР-002)

TD – анализ во временной области

MXR – измерение параметров преобразователей

PLS – импульсные измерения

ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ШУМА

NF - новая программно-аппаратная опция

- измерение Кш до 9 или 20 ГГц
 - метод Ү-фактор
 - метод Y-фактор с учетом эффекта рассогласования в тракте распространения шумового сигнала
- поддержка метода «холодного» источника (лето 2024)

Состав измерительного стенда:

- ВАЦ семейства КОБАЛЬТ
- внешний блок предусилителя AMP-xx-LSU и генератор шума (в комплект поставки не входит)
- NF специализированное ПО (мастер калибровок и измерений)

Составляющая погрешности	Оценка погрешности
ГШ, ENR=15 дБ, КСВН не более 1,25	± 0,15 дБ
Линейность приемника ВАЦ, Кш не более 10 дБ, КСВН не более 2,0	± 0,05 дБ
Паразитные каналы приема	± 0,1 дБ
Зеркальный канал приема	± 0,15 дБ
DUT (Кш=1 дБ, Ку=10 дБ, КСВН не более 2,0)	
Неисключенная погрешность из-за рассогласования	± 0,05 дБ
Влияние шумовых параметров	± 0,1 дБ
Случайная погрешность	± 0,15 дБ
Суммарная погрешность	± 0,3 дБ

ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ШУМА

NF - новая программно-аппаратная опция

Возможности проведения оперативной проверки усилительных и приемных устройств в условиях промышленного производства, в том числе и на автоматизированных измерительных стендах

• измерение Кш до 9 или 20 ГГц

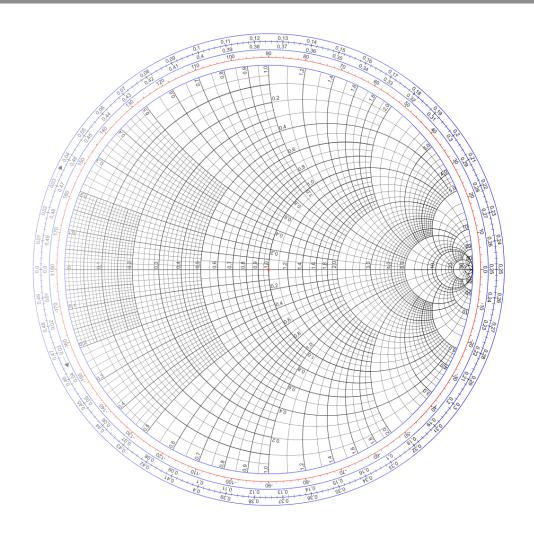
метод Ү-фактор

метод Y-фактор с учетом эффекта рассогласования в тракте распространения шумового сигнала

Состав оборудования и ПО для проведения измерений коэффициента шума:

- Измерительный приемник (ВАЦ семейства КОБАЛЬТ)
- Внешний блок предусилителя AMP-xx-LSU
- Генератор шума (опционально, в комплект поставки не входит)
- Терморезистор (опционально, в комплект поставки не входит)
- Программа NF, программное обеспечение BALI S2VNA/S4VNA

ПРИМЕРЫ ПРИМЕНЕНИЯ ВАЦ ПЛАНАР



ОБЛАСТИ ПРИМЕНЕНИЯ ВАЦ

Измерение параметров ВЧ и СВЧ устройств и компонентов и другие измерения

- Оборонно-промышленный комплекс
- Аэрокосмическая промышленность
- Микроэлектроника
- Кабельная промышленность
- Материаловедение
- Охрана и безопасность
- Медицинская техника
- Образование и академические исследов

СТЕНД КОНТРОЛЯ И КАЛИБРОВКИ ППМ

Тестирование

- Коэффициент передачи
- КПД
- Ток потребления
- Выходная мощность
- Функциональная проверка

Калибровка

- 64 состояния фазовращателей на 6 частотах
- 64 состояния фазовращателей для 32-х состояний аттенюатора на 6 частотах

ВАЦ В МИКРОЭЛЕКТРОНИКЕ

Измерения параметров ВЧ и СВЧ компонентов и материалов

- производство радиотехнических устройств
- производство компонентов
- валидация компонентной базы

входной контроль

приемка

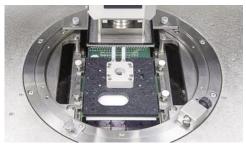
характеризация (описание)

КОМПЛЕКСНЫЕ РЕШЕНИЯ ДЛЯ ВЧ И СВЧ УСТРОЙСТВ

System VIAL DEMO VIA

- Автоматизация процесса измерений
- Проведение калибровки
- Формирование отчета по результатам измерений

ОБЛАСТИ ПРИМЕНЕНИЯ КОМПЛЕКСНЫХ РЕШЕНИЙ

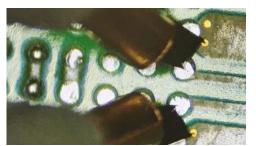

Характеризация устройств для создания моделей и отработки технологического процесса

Функциональный контроль и проектирование ИС

Тестирование устройств кремниевой фотоники

Тестирование силовых устройств на пластине (до 10 кВ, 600 A)

Анализ отказов


Тестирование МЭМС на пластине

Измерения ВЧпараметров устройств в диапазоне до 1,5 ТГц, Load-Pull измерения

Оценка надежности устройства на пластине

Оценка целостности сигнала

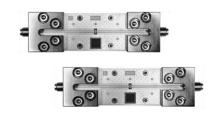
ИЗМЕРЕНИЯ ПАРАМЕТРОВ РЕЗОНАТОРОВ

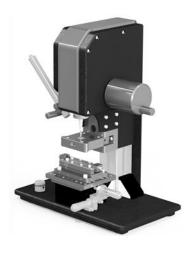
Оснастка для измерения параметров резонаторов со штырьковыми выводами

- Диапазон рабочих частот от 0 до 1 ГГц
- Схема подключения резонаторов Serial
- Схема подключения компонентов с двумя контактами Serial и Reflect

Проводимые измерения

- Компенсация оснастки для измерения резонаторов
- Измерение параметров резонаторов
- Расчёт эквивалентных параметров резонаторов C0, C1, L1, R1




КОМПЛЕКС ДЛЯ ИЗМЕРЕНИЙ SMD-КОМПОНЕНТОВ

- Измерение параметров SMD-компонентов в оснастке
- S-параметры и импеданс в условиях, близких к реальным
- Диапазон частот от 100 кГц до 20 ГГц
- Одна оснастка для калибровки и измерений
- Вакуумный пинцет с диэлектрическими насадками
- Программное обеспечение

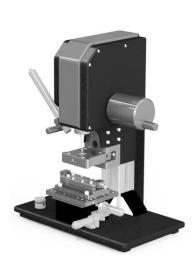
КОМПЛЕКС ДЛЯ ИЗМЕРЕНИЙ SMD-КОМПОНЕНТОВ

Устройства СВЧ

- Отбор компонентов по установленным правилам
- Библиотека описаний компонентов
- Моделирование СВЧ-устройств на основе измерений
- Ускорение цикла разработки СВЧ-устройств

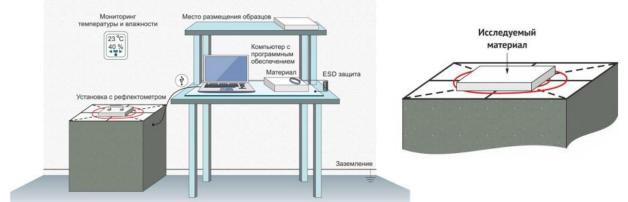
Компонентный уровень

- Сравнительный анализ модели и измерений
- Воспроизводимость производства компонентов
- Верификация компонентов после выпуска



Ключевые особенности

- Измерения параметров SMD-компонентов
- Определение модуля и фазы S-параметров
- Определение модуля и фазы импеданса
- Два типа оснастки: Serial и Shunt
- Ресурс оснастки: более 1000 подключений
- Управление ПО SMD Test
 - Автоматизация измерений
 - Исключение влияния оснастки
 - Вычисление погрешности измерений
 - Протоколирование и инструкции



ИЗМЕРЕНИЕ ПАРАМЕТРОВ МАТЕРИАЛОВ

Измерение параметров материалов с использованием оснастки и ПО от партнеров и сторонних производителей

- Система бесконтактного измерения электрофизических параметров плоских материалов «WaveCube»
- Комплект для измерения материалов DAKs компании SPEAG с использованием коаксиального пробников
- Комплект для измерения материалов компании Swissto12 с использованием техники управляемого свободного пространства
- Комплекс для измерения параметров диэлектрических материалов компании COMPASS Technology

МНОГОФУНКЦИОНАЛЬНЫЕ ПРИМЕНЕНИЯ ВАЦ

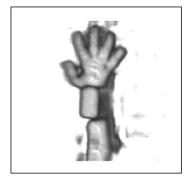
Сканер «РИК» - результат совместной работы ООО «Планар», ТГУ и ООО «Радиовидение»:

Радиотомограф, включающий в себя:

- Сканер двухкоординатное позиционирующее устройство,
- Векторный рефлектометр, обеспечивающий пошаговое сканирование в заданном рабочем диапазоне от 2 до 12 ГГц,
- Миникомпьютер,
- Приёмопередающую СШП антенну с линейной поляризацией.

Сферы применения:

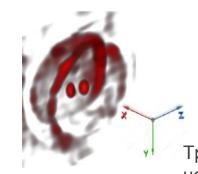
- Охрана и безопасность
- Строительная индустрия
- Медицинское оборудование



СКАНЕР «РИК»

Возможности:

1. Радиоволновая томография скрытых объектов на теле человека



Сферы применения: Охрана и безопасность

Обнаружение и картографирование неоднородностей под одеждой на теле человека

Трехмерная радиотомограмма руки человека и неоднородности на ней

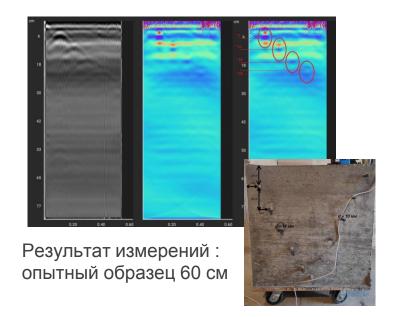
2. Радиоволновая томография неоднородностей в биологических средах

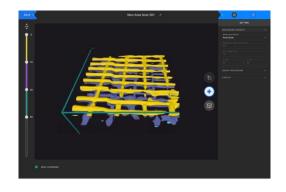
Сферы применения: Медицинское оборудование

Обнаружение и картографирование неоднородностей в биологических тканях

Трехмерная радиотомограмма неоднородности в биологической ткани

ГЕОРАДАР – ПОДПОВЕРХНОСТНАЯ РАДИОЛОКАЦИЯ

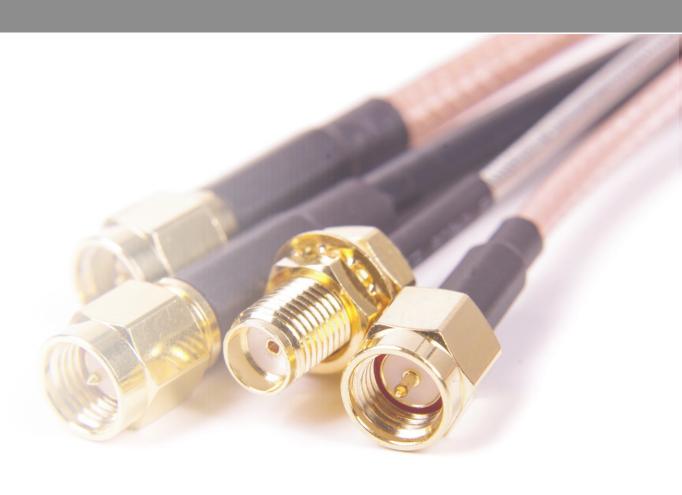



Макет георадара

Основа георадара – радиомодуль RIM5055 VNA

Ключевые параметры	
Диапазон частот	От 200 МГц до 9 ГГц
Измеряемые параметры	S-параметры
Динамический диапазон	120 дБ (полоса фильтра ПЧ 10 Гц)
Выходная мощность	От -26 дБм до +10 дБм
Время измерения 1 точки	<24 мкс
Количество точек измерения	до 500001
Амплитуда шума трассы	0.004 дБ скз
Глубина сканирования	До 80 см
Размеры (ДхШхВ)	27х21.3х15 см
Дорожный просвет	0.8 см
Количество антенн	2 (2 поляризации)
Степень защиты	IP54
Интерфейс подключения	USB-B
Время автономной работы	3 часа

ВАЦ В КАБЕЛЬНОЙ ПРОМЫШЛЕННОСТИ

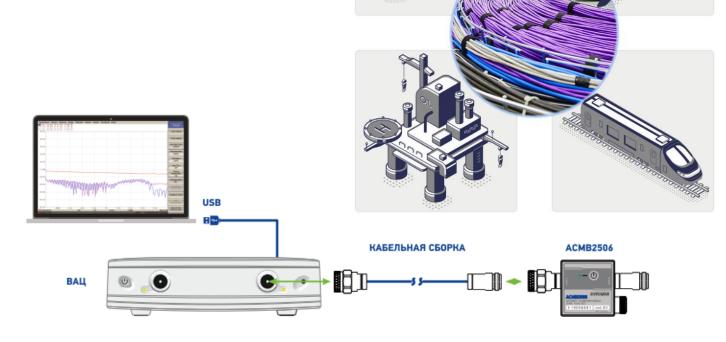

Измерения параметров кабелей и кабельных сборок, поиск мест повреждения кабелей

- производство кабелей и кабельных сборок
- проведение полного анализа параметров радиочастотных коаксиальных кабелей и кабельных сборок
- измерения параметров кабелей с разнесенными соединителями
- валидация кабелей и сборок

входной контроль

приемка

характеризация (описание)



ИЗМЕРЕНИЕ ПАРАМЕТРОВ КАБЕЛЕЙ НА ОБЪЕКТАХ

Измерение параметров протяженных коаксиальных и витопарных кабельных сборок на месте эксплуатации:

- в самолетах
- на кораблях
- в поездах/вагонах
- внутри зданий
- на производстве

СПАСИБО ЗА ВНИМАНИЕ!

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

МЕРЫ ДЛЯ КАЛИБРОВКИ АНАЛИЗАТОРОВ ЦЕПЕЙ

Предназначены для обеспечения необходимой точности измерений ВАЦ

В состав механических калибровочных наборов входят:

- нагрузки холостого хода (XX),
- короткозамкнутые нагрузки (КЗ)
- согласованные нагрузки (СН)

Характеристики:

Импеданс – 50 Ом, Соединитель N-типа

- **N9.1** Комплект мер калибровочных, до 9 ГГц
- 6550F09-M Комплект мер калибровочных, вилка, до 9 ГГц
- 6550F09-F Комплект мер калибровочных, розетка, до 9 ГГц
- 6550F18-M Комплект мер калибровочных, вилка, до 18 ГГц
- 6550F18-F Комплект мер калибровочных, розетка, до 18 ГГц

АВТОМАТИЧЕСКИЕ КАЛИБРОВОЧНЫЕ МОДУЛИ

Предназначены для калибровки ВАЦ в автоматическом режиме за одно подключение

Преимущества:

- Уменьшение временных затрат на подготовку к проведению измерений
- Снижение случайной погрешности, вызванной ошибкой оператора
- Увеличение срока службы измерительных принадлежностей (кабели, переходы) и портов ВАЦ
- Пользовательская характеризация модулей при изменении типа соединителей

АВТОМАТИЧЕСКИЕ КАЛИБРОВОЧНЫЕ МОДУЛИ

Предназначены для калибровки ВАЦ в автоматическом режиме за одно подключение

Характеристики:

• **Импеданс**: 50 или 75 Ом

• Исполнение: 2 или 4 порта

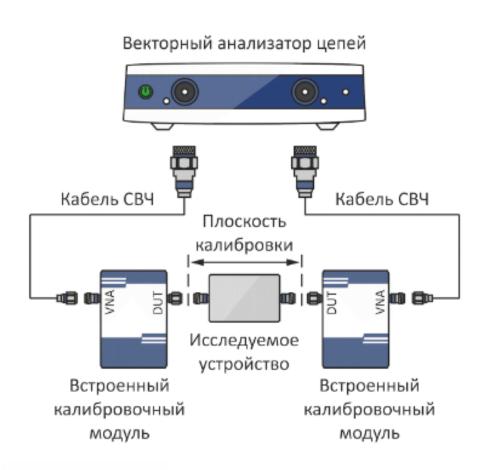
• Соединитель: тип N / 3.5 мм / 2.92 мм / 2.4 мм вилка-вилка, розетка-розетка, вилка-розетка

• **Диапазон частот:** от 20 кГц до 4 / 6 / 6.5 / 9 ГГц, от 100 кГц до 8 / 9 / 18 / 20 / 44 ГГц

• Пример обозначений:

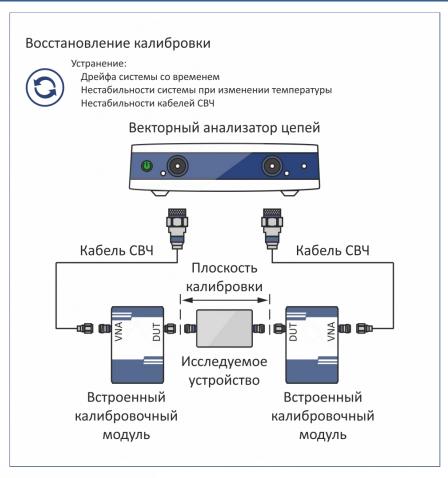
АСМ4000Т-511 – 75 Ом, от 20 кГц до 4 ГГц, N75 розетка-розетка

АСМ4000Т-512 – 75 Ом, от 20 кГц до 4 ГГц, N75 вилка-вилка


АСМ2520-011 – 50 Ом, от 100 кГц до 18 ГГц, N розетка-розетка

АСМ2520-112 — 50 Ом, от 100 кГц до 20 ГГц, 3.5 мм вилка-вилка

КАЛИБРОВОЧНЫЕ МОДУЛИ СЕРИИ ВКМ



Модули применяются при тестировании:

- Многопортовых устройств;
- Устройств, значительно удаленных от ВАЦ;
- Устройств с малыми потерями;
- При измерении фазы коэффициента передачи с высокой точностью;
- При измерении устройств на рабочем месте, подверженном колебанию температуры окружающей среды;
- Для повышения качества измерений при использовании коммутационных матриц;
- Для исключения погрешности измерений коэффициентов передачи и отражения, вызванной переподключением устройств во время измерений и калибровки.

КАЛИБРОВОЧНЫЕ МОДУЛИ СЕРИИ ВКМ

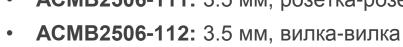
Особенности:

- Восстановление калибровки ВАЦ без отключения исследуемого устройства;
- Все модули имеют внутреннюю память для хранения заводского и пользовательского описания мер;
- Все модули характеризованы в диапазоне температур;
- Модули оснащены фиксатором гайки выходного соединителя для надежного подключения к портам измеряемого устройства;
- Управление и питание по интерфейсу USB 2.0;
- Не требуется дополнительный контроллер для управления и электропитания модулями;
- Управляющее программное обеспечение SxVNA.

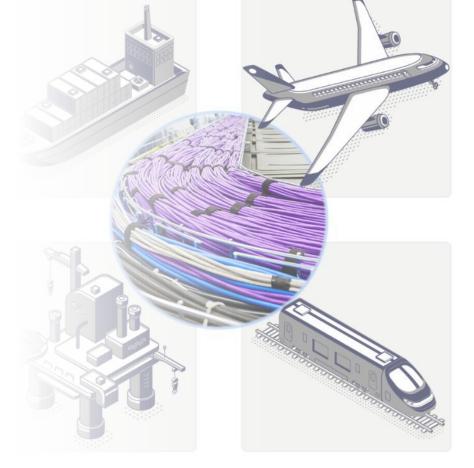
КАЛИБРОВОЧНЫЕ МОДУЛИ СЕРИИ ВКМ

Характеристики:

- Импеданс 50 Ом
- Тип соединителя 3.5 мм
- Модели:
 - ВКМ1509-111: 100 кГц 9 ГГц, розетка (ИУ) розетка (ВАЦ)
 - **BKM1509-112:** 100 кГц 9 ГГц, розетка (ИУ) вилка (ВАЦ)
 - ВКМ1520-111: 100 кГц 20 ГГц, розетка (ИУ) розетка (ВАЦ)
 - **BKM1520-112:** 100 кГц 20ГГц, розетка (ИУ) вилка (ВАЦ)


КАЛИБРОВОЧНЫЕ МОДУЛИ СЕРИИ АСМВ

Предназначены для проведения полного анализа параметров радиочастотных коаксиальных кабелей и кабельных сборок на объекте эксплуатации


Характеристики:

• Встроенный элемент питания (AAA 1.5B, время работы в автономном режиме – 200 ч)

- Импеданс 50 Ом
- Диапазон частот от 20 кГц до 6 ГГц
- Модели:
 - ACMB2506-011: тип N, розетка-розетка
 - ACMB2506-012: тип N, вилка-вилка
 - АСМВ2506-111: 3.5 мм, розетка-розетка

ВОЛНОВОДНЫЕ КАЛИБРОВОЧНЫЕ НАБОРЫ

Предназначены для разработки и производства радиоэлектронных устройств, работающих в прямоугольных волноводных трактах

- Диапазон частот: от 2 до 60 ГГц
- Сечение волноводов:
 от WR340 до WR19 (в соответствии с EIA)
 от 90×45 до 5,2×2,6 мм (в соответствии с ГОСТ РВ 51914).

ВОЛНОВОДНЫЕ КАЛИБРОВОЧНЫЕ НАБОРЫ

Стандартный калибровочный набор включает в себя:

- 2 коаксиально-волноводных перехода
- Короткозамыкающую пластину
- Отрезок волновода длиной λ/4
- Комплект крепежно-центрирующих винтов
- Описание мер для анализаторов цепей

АКСЕССУАРЫ И КОМПОНЕНТЫ СВЧ-ТРАКТА

Кабели измерительные

Коаксиально-волноводные переходы

Переходы коаксиальные

Ответвители направленные

Адаптеры-переходы

КАБЕЛИ ИЗМЕРИТЕЛЬНЫЕ

Предназначены для обеспечения точных измерений

Применяются независимо или совместно с наборами коаксиальных переходов

Для достижения наилучшей механической жёсткости при подсоединении испытуемого устройства (ИУ) к ВАЦ следует использовать один кабель и соответствующий специальный набор переходов.

Для достижения наибольшей гибкости при подсоединении ИУ следует использовать набор кабелей.

- **C5024MR24F.1** набор (2 кабеля), 50 Ом, 60 см, тип I, 2.4 мм вилка-розетка, до 50 ГГц
- **C5035M35M.1** набор (2 кабеля + 2 перехода), 50 Ом, 60 см, 3.5 мм, до 26 ГГц
- **C50NMNM.2** кабель 50 Ом, 60 см, тип N, вилка-вилка, до 18 ГГц
- **C50SMNM.2** кабель 50 Ом, 60 см, тип N тип SMA, вилка-вилка, до 18 ГГц
- **C50SMNM-1M0** кабель 50 Ом, 100 см, тип N тип SMA, вилка-вилка, до 18 ГГц
- **C50NMNM-0M6** кабель 50 Ом, 60 см, тип N, вилка-вилка, до 18 ГГц
- C50SMSM-xMx кабель 50 Ом, кратно 50 см, тип SMA, вилка-вилка, до 20 ГГц

КОАКСИАЛЬНО ВОЛНОВОДНЫЕ ПЕРЕХОДЫ (КВП)

Предназначены для сопряжения радиотехнических устройств в коаксиальном и волноводном тракте.

Применяются в разработке, производстве и тестировании радиотехнических устройств и систем, включая обеспечение их работоспособности во время эксплуатации.

КОАКСИАЛЬНО ВОЛНОВОДНЫЕ ПЕРЕХОДЫ (КВП)

Прямая конструкция КВП упрощает присоединение переходов к измеряемому устройству и сокращает количество изгибов подводящих кабелей СВЧ при измерениях.

Присоединительные размеры фланца прямоугольного волновода по ГОСТ РВ 51914-2002 от **90×45мм до 5,2×2,6мм** и от **WR-340 до WR-19**;

Тип коаксиального соединителя по ГОСТ: **PB 51914-2002** и IEEE: **STD 287-2007.**

КОАКСИАЛЬНЫЕ ПЕРЕХОДЫ

Переходы предназначены для выполнения целого ряда функций:

- Соединение устройств и кабелей в коаксиальном тракте
- Использование в качестве защитных устройств (savers)
- Расширение функциональных возможностей измерительных приборов
- Улучшение качества соединителей радиочастотных кабелей
- Применение в качестве мер коэффициентов передачи и отражения

КОАКСИАЛЬНЫЕ ПЕРЕХОДЫ

Переходы измерительного класса серии ADP1A выпускаются в метрическом и дюймовом исполнении

7.0 / 3.04 MM 3.5 / 1.52 MM 2.92 / 1.27 MM 2.4 / 1.042 MM 1.85 / 0.803 MM

- Низкий КСВН
- Малые вносимые потери
- Повышенный ресурс и высокая повторяемость и воспроизводимость результатов измерений
- Маркировка по международной системе идентификации типов соединителей

КОАКСИАЛЬНЫЕ СОЕДИНИТЕЛИ

- Блочные соединители
- Торцевые соединители
- Вертикальные соединители

БЛОЧНЫЕ СОЕДИНИТЕЛИ

Блочные соединители в коаксиальных трактах **2,92мм и 1,85мм** предназначены для установки в корпуса СВЧ блоков и модулей.

- Диапазон частот: от 0 до 54 ГГц
- КСВН: не более 1,2
- Вносимые потери: не более 0,2 дБ
- Диапазон рабочих температур: от -60 до +110 °C

ТОРЦЕВЫЕ СОЕДИНИТЕЛИ

Торцевые соединители в коаксиальных трактах 2,92мм и 1,85мм предназначены для установки на торец многослойной печатной платы.

- Диапазон частот: от 0 до 54 ГГц
- КСВН: не более 1,2
- Вносимые потери: не более 0,2 дБ
- Диапазон рабочих температур:
 от -60 до +110 °C

Монтаж производится при помощи крепёжных винтов и пайки корпуса к плате. Благодаря модульной конструкции замена внутренней части соединителя осуществляется без демонтажа корпуса.

КОМПОНЕНТЫ СВЧ ТРАКТА ПОД ЗАКАЗ

НПК «ТАИР»

производит как серийные компоненты СВЧ тракта, так и изделия по индивидуальным техническим требованиям под специфические задачи заказчика.

ОБОРУДОВАНИЕ ДЛЯ ПРОИЗВОДСТВА РЭА

Машины для правки и резки полужесткого кабеля

ΜΠΚ 1.1

Машина правки кабеля МПК-1.1 предназначена для выпрямления кабелей с оболочкой на основе медной или алюминиевой цельнотянутой трубки

Основные характеристики:

 Диаметр кабеля :
 от 0.45 мм до 6.5 мм

 Количество роликов :
 9

 Количество регулируемых роликов :
 3

МПРК 1.2

Правка и мерная нарезка полужестких коаксиальных кабелей с оболочкой на основе медной или алюминиевой цельнотянутой трубки и кабелей с пропаянной оплеткой.

ОБОРУДОВАНИЕ ДЛЯ ПРОИЗВОДСТВА РЭА

Машина для гибки и резки полужесткого кабеля

Гибка (формовка) с последующей отрезкой полужестких коаксиальных кабелей с оболочкой на основе медной или алюминиевой цельнотянутой трубки и кабелей с пропаянной оплеткой.

Гибка и отрезка осуществляется в автоматическом режиме по заданной программе.

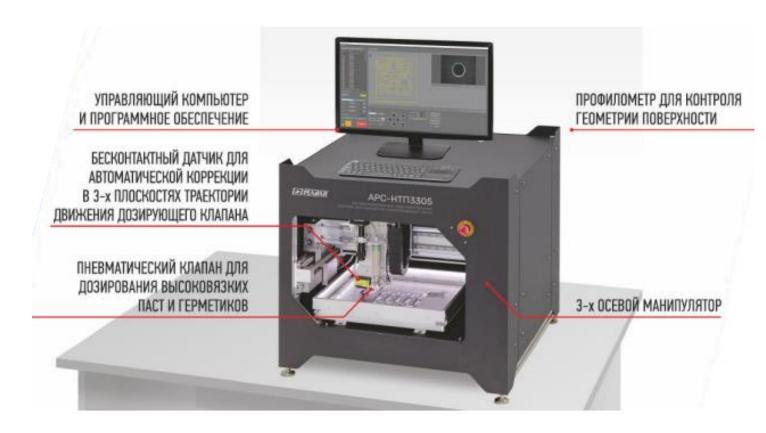
Технические характеристики:

Диаметр обрабатываемых кабелей, мм

Исполнение Аот 0.45 до 2.5Исполнение Вот 1.5 до 4.0Исполнение Сот 3.5 до 6.5Возможные радиусы гибки, ммот 3 до 30

Количество радиусов гибки 2 Угол загиба кабеля макс. 200

Внутренняя память 99 программ Производительность 80 деталей/час



ОБОРУДОВАНИЕ ДЛЯ ПРОИЗВОДСТВА РЭА

Автомат для нанесения экранирующих паст

Область применения

- Дозирование токопроводящих и радиопоглощающих материалов при производстве СВЧ-оборудования
- Дозирование герметизирующих составов при производстве корпусов
- Дозирование паяльных паст и клея при SMT-монтаже
- Прототипирование и аддитивные технологии (3D-печать пластиками по технологии FDM)

СПАСИБО ЗА ВНИМАНИЕ!

КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА

ПЛАНАР - российский разработчик и изготовитель векторных анализаторов цепей (ВАЦ), которые позволяют решать 80%-90% имеющихся у российских заказчиков задач, потому что:

- ВАЦ ПЛАНАР обладают *высокой точностью* измерений
- ВАЦ ПЛАНАР компактны и портативны
- ВАЦ ПЛАНАР можно *адаптировать* под индивидуальные измерительные задачи
- ВАЦ ПЛАНАР обеспечивают низкую совокупную стоимость владения

Компания имеет:

- Работающее производство в Челябинске и Томске, новый завод на 2000 рабочих мест (под Челябинском)
- Большой парк демо-оборудования

Компания обеспечивает:

- Оперативную техническую поддержку заказчиков силами широкого штата грамотных специалистов
- Быстрое и качественное сервисное обслуживание

КОНКУРЕНТНЫЕ ПРЕИМУЩЕСТВА

А также:

- За последние несколько лет экспертиза, уровень, качество продукции ООО «ПЛАНАР» выросли, в том числе, и за счёт анализа и соответствия требованиям международного рынка
- Компания оперативно реагирует на запросы рынка, имея очень короткое плечо передачи информации от заказчика до разработчика.
- Компания ведет регулярную работу по внесению продукции в ГРСИ (Государственный Реестр Средств Измерений), плотно взаимодействует с ВНИИФТРИ.
- Начиная с 2020 года, компания заказывает комплектующие для своей продукции не по поступлению заказов, а на собственный склад, согласно сформированному прогнозу на 1-2 летний период
- Компания предоставляет возможности обучения для партнеров и заказчиков, обеспечивает хорошую сервисную поддержку и быстрое реагирование на запросы как от заказчиков, так и от партнеров
- Анализаторы цепей ПЛАНАР серий КОБАЛЬТ, КОМПАКТ и ОБЗОР внесены в Реестр радиоэлектронной продукции в соответствии с постановлением правительства РФ №878.

