intensified 16 bit **sCMOS** camera

intensified sCMOS technology 1504 x 1504 pixel

enhanced extinction ratio gating

120 fps @ full resolution

80G fiber optic data interface

8 images in 408 ns 16 images in 960 ns exposure time 51 ns with 18 mm intensifier

pco.clicam C8

For applications which do not challenge the absolute technical limits in multi channel intensified imaging we have introduced the new **pco.dicam C8 LT as a budget friendly alternative to the pco.dicam C8 and pco.dicam C8 UHS**.

Based on the proven technology of our established pco.dicam C8 platform the pco.dicam C8 LT gives you full access to the world of true optical gated imaging. Eight 18mm high quality **image intensifiers** in a fully integrated **8-channel sCMOS camera**: Its high-end tandem lens system equally distributes the incident light from a single optical input to the 8 individual channels - completely free of artifacts. Each channel is capable of detecting single photons with 51 ns shortest exposure time and up to 15 fps at full 2.3 MPixel resolution.

Let our decades of research and development in **intensified** and **sCMOS camera technology** benefit your application!

120 fps @ full 2.3 MPixel resolution	high frame rates at high resolution for imaging of dynamic processes
1.1 e- readout noise	lowest readout noise of any gated intensified camera system
16 bit digitization	taking advantage of the higher dynamic range possible from high-end image intensifiers
optical coupling via ultra-speed tandem lens	outstanding image quality with high transmission efficiency and no artifacts
tandem lens with 0.53 : 1 image scaling	full 18 mm diameter of intensifier output is imaged (lossless) onto an sCMOS sensor
80G fiber optic based data interface	fiber optic interface virtually covers any distance without deploying additional interface converters or signal amplifiers with immunity to EMI
double shutter mode with 300 ns interframing time	two consecutive full resolution images with a configurable minimum interframing time of 300 ns on each of the 8 channels
2.3 MPixel sCMOS sensor	overcomes CCD limitations in terms of speed and sensitivity
enhanced extinction ratio gating	fast MCP gating for improved extinction ratio for the blue and uv part of the spectrum
additional optical trigger input	robust trigger transmission over long distance in EMC critical environments
selected highly homogeneous image intensifiers	uses best image intensifier quality available on the market
50 ns trigger to exposure start delay	ultra-fast camera reaction to trigger event
51 ns gating with 18 mm intensifier	captures fast transient phenomena
extensive and highly precise IN/ OUT signaling	allows for perfect synchronization in any experimental setup as timing master or slave
configurable delay in steps of 1 ns	flexible adaptation to synchronization needs

features&benefits

camera components overview

>> top view

front part with tandem lens system and beam splitter prisms from the single input (top) to the 8 image intensifiers (bottom)

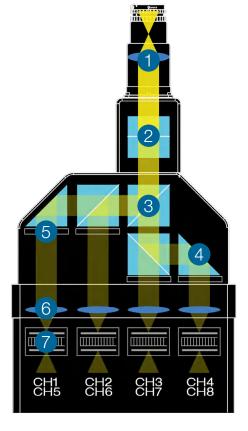
A collimator lens generates bundles of parallel rays with focus infinity.

A double prism redirects 50 % of the input light to the lower level of channels 5 - 8.

In both levels 3 double prisms provide a 50:50 beam distribution under a 90° angle.

5

6)


Single prisms act as 99.9 % reflection mirrors.

Spectral filters can be mounted individually for each of the 8 light channels (CH1, CH2, CH3, CH4, CH5, CH6, CH7, CH8).

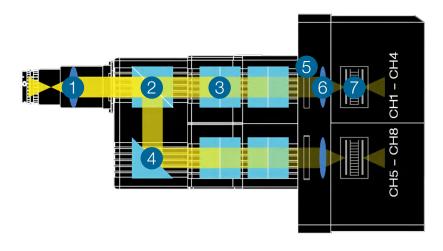
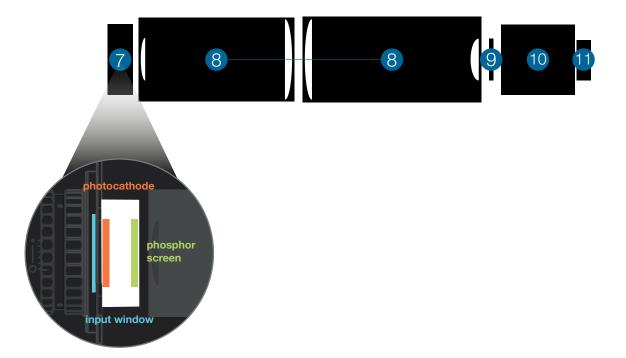

The imaging lenses of each channel focus the parallel bundles onto the photocathode of the image intensifier.

Image intensifier (See more information on the next page.)

» side view

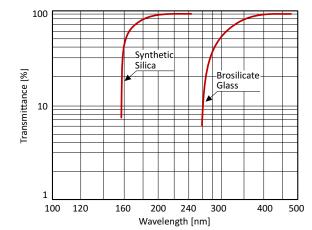
camera components overview

8 optical coupling lens system



9 sCMOS image sensor

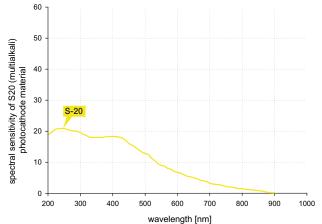
11 10G fiber optic based interface


technical specifications

type	HighRes micro channel plate (MCP)
	6 µm channel
input window	synthetic silica
photocathode material	S20
image intensifier pitch distance	6 µm
image intensifier MCP type	single stage low resistance MCP for high strip current
MCP operational modes	continuous gated for enhanced extinction ratio
image intensifier diameter	18 mm
phosphor screen material	P43, P46
output window	glass
image intensifier system resolution	> 50 lp/mm @ 5 % MTF typical (depends on phosphor)
shortest gating time	51 ns

» image intensifier input window

Typical transmittance of image intensifier input window materials.


data courtesy of Hamamatsu Photonics

Due to the optical properties of the beam-splitter optics, there is no uv transmission below 380 nm. Intensifiers with MgF₂ input window are not available. Standard input window for S20 photocathodes is synthetic silica.

» image intensifier photocathode characteristics

Spectral sensitivities of different photocathode material: S20 (multialkali)

data courtesy of Hamamatsu Photonics

photocathode material	peak wavelength [nm]	typical quantum efficiency at peak wavelength [%]	dark counts [s ⁻¹ /cm ²]
S20 (multialkali)	250	20	1500

data courtesy of Hamamatsu Photonics

»image intensifier phosphor

phosphor	phosphor decay (typ.) to		peak	typical
priosprior	10 %	1 %	emission	efficiency
P43	1 ms	4 ms	545 nm	100 %
P46	0.2 - 0.4 µs	2 µs	530 nm	30 %

You can combine all photocathode materials with P43 or P46 phosphor. Whereas the P43 phosphor has a much brighter emission than the P46 phosphor, it has a rather long decay time, i.e. the time required till the phosphor emission fades out after the excitation by electron bombardement has been stopped. This decay time is therefore critical for fast image repetition rates primarily in double image application or when operating the camera in spectroscopic mode with line rates in the kHz range.

technical specifications

» optical coupling lens system of the detector units (8x)

ultra-speed tandem lens between image intensifier & sCMOS

	-
transmission efficiency	> 30 %
vignetting	< 3 %
resolution	> 60 lp/mm
scaling rates	ß=0.53 for 18 mm intensifier

1504 pixel image ø 18 mm intensifier ø 18 mm

The projected image circle is completely covered by 1504 x 1504 6.5 µm pixels of the sCMOS detector. There is no "waste" of valuable intensifier area. As a consequence the four corners of the sCMOS sensor remain black.

technical specifications

>> sCMOS image sensor

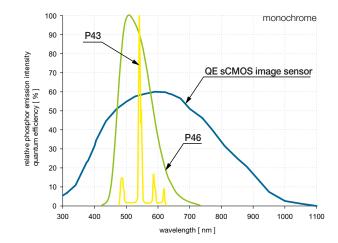
Each detector unit of this unique 8 channel design is equipped with a sCMOS image sensor.

type of sensor	scientific CMOS (sCMOS)
resolution (h x v)	1504 x 1504 active pixel
pixel size (h x v)	6.5 μm x 6.5 μm
sensor format / diagonal	9.8 mm x 9.8 mm / 13.8 mm
shutter mode	single image double image
MTF ¹	76.9 lp/mm (theoretical)
fullwell capacity	15,000 e ⁻ for P46 phosphor 30,000 e ⁻ for P43 phosphor
readout noise ²	1.1 med / 1.5 ms e ⁻ single image 2.2 med / 2.5 ms e ⁻ double image
dynamic range	13,600 : 1 (82.7 dB) for P46 phosphor 27,200 : 1 (88.7 dB) for P43 phosphor
quantum efficiency	58 % for P43 peak emission @ 545 nm 57 % for P46 peak emission @ 530 nm
spectral range	300 nm 1000 nm
dark current ³	< 0.6 e ⁻ /pixel/s @ 7 °C
DSNU	1.0 e ⁻ ms
PRNU	< 0.6 %
anti blooming factor	1 : 10,000

» frame rates

Due to the special 8 channel design of the pco.dicam C8 and the flexible timing possibilities, extremely high burst frame repetition rates are feasible. In single image mode you can record sequences of 8 ultra fast images and in double image mode sequences of 16 ultra fast images. Examples for such extreme frame repetition rates are given below.

» continuous imaging


1504 x 1504	120 fps
single image mode	8 images of 51 ns exposure time with 0 ns interframing time: 19,600,000 fps This 8 image sequence can be repeated every 67 ms
double image mode	16 images of 60 ns exposure time with 0 ns interframing time: 16,600,000 fps This 16 image sequence can be repeated every 267 ms

¹ Modulation transfer function. ² The readout noise values are given as median (med) and root mean square (rms) values due to the different noise models, which can be used for evaluation.

All values are raw data without any filtering. ³ Measurements with dark current compensation.

» perfect fit: phosphor emission vs. sCMOS quantum efficiency

This chart describes the spectral situation for the internal imaging of the image intensifier's phosphor output screen to the sCMOS sensor of the camera detector module. This imaging is done by the highly efficient tandem lens system.

Please note: The spectral sensitivity relevant for your experiment is solely determined by the QE curve of the photocathode material of the image intensifier (page 6).

technical specifications

>> detector unit (8x)

frame rate	120 fps @ 1504 x 1504 pixel	
dynamic range A/D ⁵	16 bit	
pixel scan rate	286.0 MHz	
binning horizontal	x1, x2, x4	
binning vertical	x1, x2, x4	
region of interest (ROI)	horizontal: steps of 4 pixels vertical: steps of 1 pixel	
non linearity	< 1 %	
cooling method	+ 7 °C stabilized, 1 stage peltier with forced air (fan)	
input signals	electrical trigger, arm input (TTL level, BNC connectors), gate disable (high-speed TTL input, BNC connectors)	
output signals	gate/expos out monitor, user monitor output (TTL level, BNC connectors)	
time stamp	in image (1 µs resolution)	

» exposure modes

single image mode

exposure times	variable 51 ns 250 ns (1 ns steps),
	250 ns 1 s (10 ns steps)
delay times	0 ns 250 ns (1 ns steps),
	250 ns 1 s (10 ns steps)
maximum repetition frequency	200 kHz sustained, 3.3 MHz burst
insertion delay	
trigger input to exposure out	19 ns
trigger input to optical open	49 ns
jitter	
trigger input to exposure out	35 ps rms
trigger input to optical open	150 ps rms
double image mode	
exposure times	20 ns 1 ms (in 10 ns steps)
delay settings	0 ns 10 ms (in 10 ns steps)
interframing time	300 ns 10 ms (in 10 ns steps)

interframing time on every channel

⁵ The high dynamic signal is simultaneously converted at high and low gain by two 11 bit A/D converters and the two 11 bit values are sophistically merged into one 16 bit value.

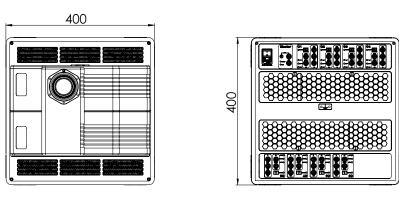
» general camera system

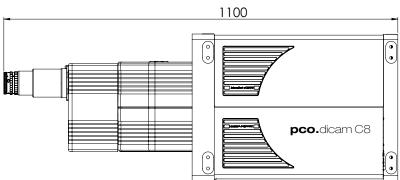
power supply	110 - 230 V
power consumption	360 W
weight	90 kg
operating temperature	+ 10 °C + 40 °C
operating humidity range	10 % 80 % (non-condensing)
storage temperature range	- 10 °C + 60 °C
optical mount	F-mount
maximum cable length	10 km (CLHS FOL)
input signals	master trigger electrical and optical
CE / FCC certified	yes

technical specifications

» camera interface (8x)

data transfer	Camera Link HS, FOL (Single F2, 1X1, S10) two 4 port frame grabber for PCI Express
maximum cable length	10 km (CLHS FOL)
master input signals	optical trigger (FOL), electrical trigger, arm input (TTL level, BNC connectors)
additional input signals per channel	electrical trigger, arm input (TTL level, BNC connectors), gate disable (high-speed TTL input, BNC connectors)
additional output signals per channel	gate/expos out monitor, user monitor output (TTL level, BNC connectors)




technical specifications

>>> dimensions

Camera equipped with F-mount lens adapter. All dimensions are given in millimeter.

scMOS

>> camera view

» applications

laser induced incandescence (LII) | shock wave physics | laser induced breakdown spectroscopy (LIBS) particle image velocimetry (PIV) | time resolved spectroscopy | plasmaphysics | laser induced fluorescence (LIF) ballistics | combustion

>> software

With pco.camware you control all camera settings, the image acquisition, and the storage of your image data. The pco.sdk is the complementary software development kit. It includes dynamic link libraries for user customization and integration on Windows PC platforms. Drivers for popular third party software packages are also available for you.

All this items like pco.camware, pco.sdk, and third party drivers are free to download at www.pco.de

customization

>> possible combinations⁶

photocathode	input window	phosphor
COO colocted	synthetic silica	P46
S20 selected		P43 ⁶

 6 P43 phosohor cannot be used, if 16 fast images with interframing times < 1 ms are required.

selected

quality specified for 18 mm diameter area corresponding to full 1504 x 1504 pixel sCMOS sensor resolution, extinction ratio 10 times higher than standard grade, image intensifiers with S20 photocathode exclusively come in selected grade quality, contact our technical sales team for further details on the two quality grades

>> select interface

type of fiber optic interface (CLHS FOL) module in camera and frame grabber

SM SFP+ up to 10 km

MM SFP+ up to 300 m

FOL cable length default: 10 m

contact

pco europe +49 9441 2005 50 info@pco.de pco.de

pco america +1 866 678 4566 info@pco-tech.com pco-tech.com

+65 6549 7054 info@pco-imaging.com pco-imaging.com

pco china +86 512 67634643 info@pco.cn pco.cn

official PCO sales partner

for application stories please visit our website

pco.

subject to changes without prior notice | lens is sold seperately ©PCO AG, Kelheim | pco.dicam C8 LT data sheet | v1.02

ISO 9001:2015