

Cascade Microtech's high-performance RF Pyramid Probe cards provide state-of-the-art signal integrity for wireless RF and microwave production test. Microstrip transmission lines maintain impedance control all the way to the bond pad. Patented ground and power planes with bypass capacitors provide resonance-free power supplies directly to the IC. In addition, the RF Pyramid Probe card delivers minimal pad damage and extremely long life, dramatically reducing the cost of ownership versus other RF production probe card offerings. Cascade Microtech's innovative Pyramid Plus<sup>™</sup> manufacturing process ensures a substantially lower cost of ownership, while delivering superior RF signal integrity in a single solution.

# FEATURES / BENEFITS

| Superior signal performance  | High-bandwidth RF transmission lines and guarded DC traces to probe tips guarantee performance and ensure               |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                              | low signal loss.                                                                                                        |
|                              | Patented ground and power planes, with bypass capacitors, provide resonance-free stable power supplies                  |
|                              | directly to the DUTs.                                                                                                   |
|                              | Consistent low contact resistance and low-inductance probe tips ensure accurate and repeatable high-speed               |
|                              | digital and analog measurements.                                                                                        |
| Mechanical robustness        | ${\sf MicroScrub}$ ${f {f e}}$ technology provides consistent low contact resistance and inductance on a variety of pad |
|                              | materials and flip-chip bumps.                                                                                          |
|                              | High-density photolithographically-placed contact probe tips are stable over lifetime of product.                       |
|                              | Low maintenance and permanent probe tip placement improve test cell uptime, reducing the cost of ownership              |
|                              | compared to other probing technologies.                                                                                 |
| Versatile and cost-effective | Lower maintenance overhead with less cleaning and no need for probe tip alignment.                                      |
| Advanced membrane technology | Cascade Microtech's industry-leading Pyramid Plus manufacturing process delivers higher performance, plus               |
|                              | unique features that lower your cost of test.                                                                           |



| MECHANICAL                                | P100-P800                             | P800-S                       |
|-------------------------------------------|---------------------------------------|------------------------------|
| Minimum pitch, peripheral                 | 50 μm                                 | 67 µm                        |
| Staggered pitch, peripheral               | 36 μm/72 μm                           | 44 µm / 88 µm                |
| Minimum pitch, array                      | 180 µm                                | 180 µm                       |
| Dimensional stability for lifetime        | 10 µm for single temperature          | 10 µm for single temperature |
| Probe tip size Al, Cu (nominal)           | 12 µm                                 | N/A                          |
| Probe tip size Low K/PoAA (nominal)       | 18 µm                                 | N/A                          |
| Probe tip size Au, solder balls (nominal) | 25 µm                                 | 25 µm                        |
| Probe tip material                        | Non-oxidizing nickel alloy            | Non-oxidizing nickel alloy   |
| Temperature range                         | -50°C to 125°C                        | -50°C to 125°C               |
| Pad and bump materials                    | Al, Cu, Au, all types of solder balls | All types of solder balls    |
| Spring rate                               | 1.67 g/mil                            | 3.33 g/mil                   |
| Edge sense                                | Optional                              | Not available                |

#### ELECTRICAL

| Leakage                                   | 1.4 nA/V                                                                                             |
|-------------------------------------------|------------------------------------------------------------------------------------------------------|
| Contact resistance                        | 0.1 to 0.2 $\Omega$ (Al pads), 0.005 to 0.010 $\Omega$ (Au pads), 0.3 to 0.5 $\Omega$ (solder balls) |
| Maximum current / tip                     | 1 A (Au pads), 200 mA (Al pads, Cu pads and solder balls)                                            |
| Maximum power 50 Ω microstrip             | +33 dBm CW, +36 dBm pulsed                                                                           |
| Max. power 50 Ω Co-Planar Waveguide (CPW) | +33 dBm CW, +39 dBm pulsed                                                                           |

#### POWER SUPPLY PERFORMANCE

| Power trace impedance            | 10 Ω         |
|----------------------------------|--------------|
| Power supply non-resonant        | up to 10 GHz |
| Inductance to first capacitor    | 0.2 nH       |
| Maximum current std power trace  | 1A           |
| Maximum current per power supply | 10 A         |

### SIGNAL TRACE PERFORMANCE

| Standard                               |                              |  |
|----------------------------------------|------------------------------|--|
| Signal line impedance                  | 50 Ω nominal                 |  |
| Ground inductance (typical)            | 0.04 nH                      |  |
| Return loss (S <sub>11</sub> ) to coax | >10 dB from 50 MHz to 20 GHz |  |
| Input reflection                       | ±80 mrho @ 50 Ω              |  |
| Ontional                               |                              |  |

| optionat                  |                                            |
|---------------------------|--------------------------------------------|
| Range of trace impedances | 2 Ω to 120 Ω ±20%                          |
| Differential impedance    | 50 $\Omega,$ 100 $\Omega$ and 200 $\Omega$ |

# SIGNAL TRACE LENGTH MATCHING

| Typical pogo pad  | No match              |
|-------------------|-----------------------|
| Custom line match | ±1.5 ps (3 ps window) |

| SERIES PATH RESISTANCE (TYPICAL) | P100  | P300  | P400  | P500  | P800/P800-S |
|----------------------------------|-------|-------|-------|-------|-------------|
| DC resistance                    | 1Ω    | 1 Ω   | 1.6 Ω | 2.5 Ω | 2.5 Ω       |
| Microstrip                       | 1.2 Ω | 1.2 Ω | 2 Ω   | 3 Ω   | 3 Ω         |
| CPW                              | 0.8 Ω | 0.8 Ω | 1 Ω   | 1.2 Ω | 1.2 Ω       |

# **TYPICAL ISOLATION MEASUREMENTS**

| Filter and switch | 2 GHz  | 50 dB to 70 dB |  |
|-------------------|--------|----------------|--|
| High pin count    | 10 GHz | 50 dB          |  |
| Telecom           | 20 GHz | 45 dB          |  |

| MATCHING NETWORKS EXAMPLES | OUTPUT IMPEDANCE                        | COMPONENTS      | CORRELATION TO PACKAGE |
|----------------------------|-----------------------------------------|-----------------|------------------------|
| Power amplifiers           | 2 Ω to 8 Ω                              | 125 ps from DUT | ±0.5 dB                |
| Wireless RF                | $100\Omega$ to $120\Omega$ differential | Balun on PCB    | ±1 dB                  |

#### **COMPONENTS ATTACHED TO MEMBRANE**

| Package type | SMT                                |
|--------------|------------------------------------|
| Sizes        | 0201, 0402 (preferred), 0603, 0805 |

#### **COMPONENTS DEFINED WITHIN MEMBRANE**

| Inductors         | 0.3 nH to1 nH (±0.3 nH)   |
|-------------------|---------------------------|
| Inductors         | 1 nH to 10 nH (±30%)      |
| Trimmed inductors | 0.3 nH to 10 nH (±0.1 nH) |
| Capacitors        | 20 fF to 2 pF (±20%)      |

| PYRAMID CORE OPTION | <b>S</b> P100 | P300      | P400      | P500    | P800    | P800-S      |
|---------------------|---------------|-----------|-----------|---------|---------|-------------|
| I/O capacity        | 108           | 264       | 408       | 520     | 804     | 804         |
| XY area (mm)        | 4.1 x 4.1     | 4.1 x 4.1 | 9.6 x 9.6 | 24 x 24 | 38 x 11 | 38.4 x 12.5 |
| Components on core  | 32            | 32        | 40        | 100     | 120     | 120         |

#### **RF-CLASS BANDWIDTH AND RISETIME PERFORMANCE**

|            | TRANSMISSION LINE |             | FRAME CORE BANDWIDTH AND RISE TIME |              |              |              |              |
|------------|-------------------|-------------|------------------------------------|--------------|--------------|--------------|--------------|
| Membrane   | PCB               | Connector   | P100                               | P300         | P400         | P500         | P800/P800-S  |
| Microstrip | Microstrip        | Pogo pad    | 2 GHz 200 ps                       | 2 GHz 200 ps | 2 GHz 200 ps | 2 GHz 200 ps | 2 GHz 200 ps |
| Microstrip | Microstrip        | PCB coaxial | 7 GHz 50 ps                        | 7 GHz 50 ps  | 7 GHz 50 ps  | 7 GHz 50 ps  | 7 GHz 50 ps  |
| Microstrip | Coax              | K or V      | 20 GHz 22 ps                       | 20 GHz 22 ps | 20 GHz 22 ps | 15 GHz 25 ps | 20 GHz 22 ps |
| CPW        | Coax              | K or V      | 20 GHz 15 ps                       | 20 GHz 15 ps | 20 GHz 17 ps | 20 GHz 22 ps | 20 GHz 17 ps |

#### **PYRAMID CORE NAME CORRELATION**

| Frame core          | P100 | P300 | P400 | P500 | P800 | P800-S |
|---------------------|------|------|------|------|------|--------|
| Previous frame core | RFC  | SRF  | MSI  | LSI  | VLSR | N/A    |

#### **50 Ω SIGNAL TRACE OPTIONS**

| Microstrip                                 | Coplanar Wavegui   |
|--------------------------------------------|--------------------|
| Standard option                            | Optional           |
| Higher routing density/Smaller trace width | Lower routing dens |
| Best choice for isolation                  | Higher power/Low   |
|                                            |                    |



50 Ω Microstrip Signal Trace

#### de (CPW)

sity/Wider trace width (GSG)

er path resistance



**RFseries** 

#### **EMULATING LEAD INDUCTANCE**

Some circuits require proper inductive loading

Effects cannot be calibrated out easily

Embed inductance on all interface pins into probe card

Do not calibrate past lead inductance structures



### MULTI-DUT TESTING (CELL PHONE PROCESSOR)





#### **IMPEDANCE MATCHING**

| Not all devices operate at 50 $\Omega$              |                 |  |  |  |
|-----------------------------------------------------|-----------------|--|--|--|
| Matching to real impedance is needed for many tests |                 |  |  |  |
| Incorporate into probe                              | card            |  |  |  |
| Many techniques:                                    | l umned element |  |  |  |

Many techniques:

| Lumped eternent                |
|--------------------------------|
| Quarter wave transmission line |
| Combination                    |



# **ISOLATION/CROSSTALK**

Port-to-port coupling must be less than the DUT

Contain the fields within closed structures when possible

Separate ports as best as possible

Consider pad layout for isolation and test setup validation



Example: Multi-position RF switch

© Copyright 2012 Cascade Microtech, Inc. All rights reserved. Cascade Microtech, MicroScrub and PyramidProbe are registered trademarks, and Pyramid Plus is a trademark of Cascade Microtech, Inc. All other trademarks are the property of their respective owners.

Data subject to change without notice

PyramidRF-DS-0212

**RFseries** 

Cascade Microtech, Inc. **Corporate Headquarters** toll free: +1-800-550-3279 phone: +1-503-601-1000 email: cmi\_sales@cmicro.com

Germany phone: +49-89-9090195-0 email: cmg\_sales@cmicro.com

Japan phone: +81-3-5615-5150 email: cmj\_sales@cmicro.com

China phone: +86-21-3330-3188 email: cmc\_sales@cmicro.com

Singapore phone: +65-6873-7482 . email: cms\_sales@cmicro.com

Taiwan phone: +886-3-5722810 email: cmt\_sales@cmicro.com

